

ZM20-3GX

Product Code: C7C2-CR403018D0A-002

Table of Contents

REVISION HISTORY1
PRODUCT CHARACTERISTICS2
BRIGHTNESS GROPES3
PERFORMANCE GROUPS - FORWARD VOLTAGE (IF = 1500
mA)3
MAXIMUM RATINGS4
TYPICAL SPATIAL DISTRIBUTION5
RELATIVE LUMINOUS FLUX VS. CURRENT (TB = 25 °C)5
RELATIVE LUMINOUS FLUX VS. TEMPERATURE (If = 1500
mA)6
FORWARD VOLTAGE VS.FORWARD CURRENT(TB=25 °C)6
CHROMATICITY COORDINATE SHIFT7
RELATIVE FORWARD VOLTAGE8
GPI'S STANDARD WHITE CHROMATICITY REGINS PLOTTED
ON THE 1931 CIE CURVE9
RELIABILITY10
Electrical Internal Circuit10
ESD Protection Diode10
MECHANICAL DIMENSIONS11
TRAY12
CAUTIONS13

REVISION HISTORY

Rev.	Date	Charged	Approved	Revision Summary
Beta	2020/10/15	Fabien	Bruce	First issue

PRODUCT CHARACTERISTICS ($T_j = 25$ °C; $I_F = 1500$ mA)

Parameter		Values	Unit
Chromaticity coordinates acc. To CIE 1	931 (typ.)	CIE-x: 0.323 CIE-y: 0.333	
Viewing Angle (FWHM)		120	o
	(min.)	9.0	V
Forward voltage	(typ.)	9.8	V
	(max.)	10.8	V
		not designed for reversed	
Reversed Current		operation	
Thermal resistance junction / boa	rd (typ.)	2.5	K/W
Radiating surface		6.02	mm²

JEDEC MOISTURE SENSITIVITY

l evel	Floo	r Life
Levei	Time	Conditions
1	unlimited	≦ 30°C / 85 % RH

BRIGHTNESS GROPES

Item	Group	Form Factor	Measured Test Condition 1500 mA Pulsed Operation Case Temperature $T_c = 25$ °C Minimum Luminous Flux (lm)
	Z23	1x3	1350
ZM20-3GX	Z24	1x3	1500
	Z25	1x3	1670

Notes:

- GPI maintains a tolerance of ±7% on flux
- Calculated flux values are for reference only

PERFORMANCE GROUPS - FORWARD VOLTAGE (IF = 1500 mA)

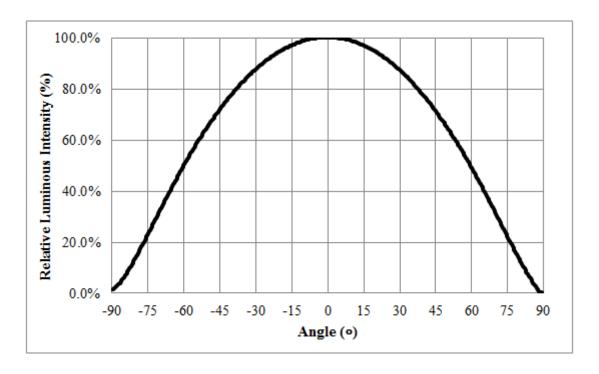
Group code	Minimum Forward Voltage (V)	Maximum Forward Voltage (V)
KF	9.0	9.6
KG	9.6	10.2
КН	10.2	10.8

Notes:

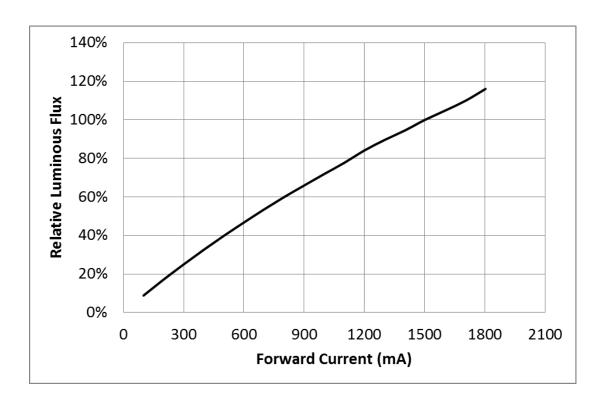
• GPI maintains a tolerance ±0.1V on voltage measurements

| 3

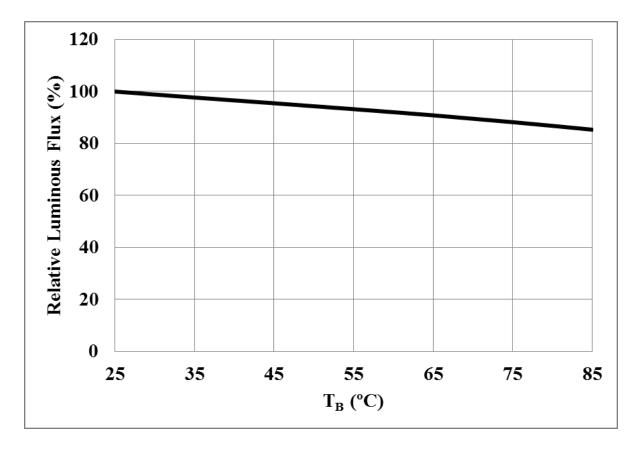
| 4



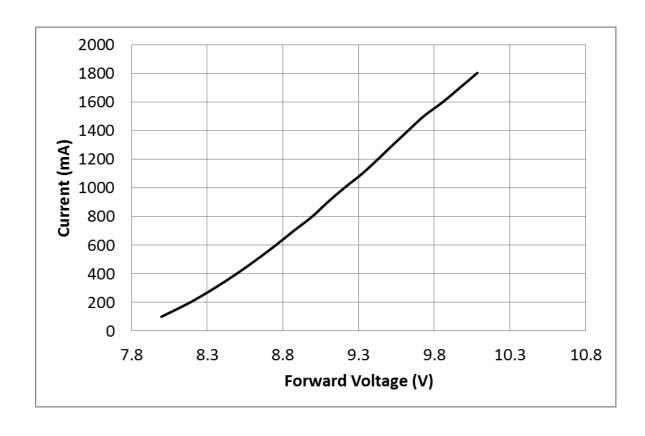
MAXIMUM RATINGS


Parameter		Values	Unit
Operating temperature range		-40 125	°C
Storage temperature range		-40 125	°C
Junction temperature)	150	°C
Forward Current	(typ.)	1500	mA
	(max.)	1800	mA
Reversed voltage		not designed for reversed operation	V
ESD Sensitivity		Up to 8	kV

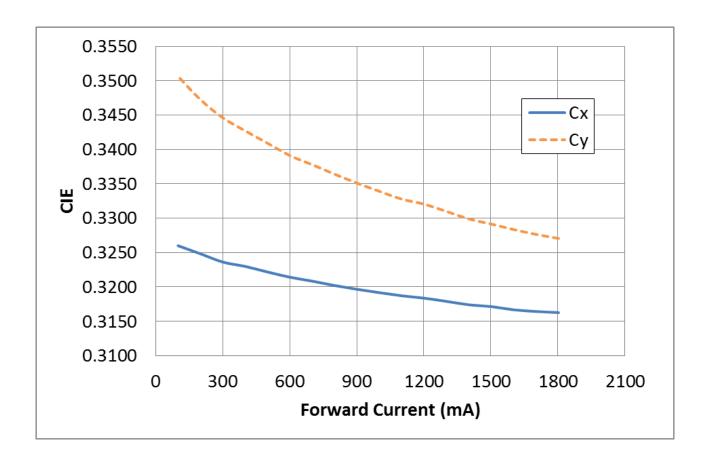
TYPICAL SPATIAL DISTRIBUTION -WHITE



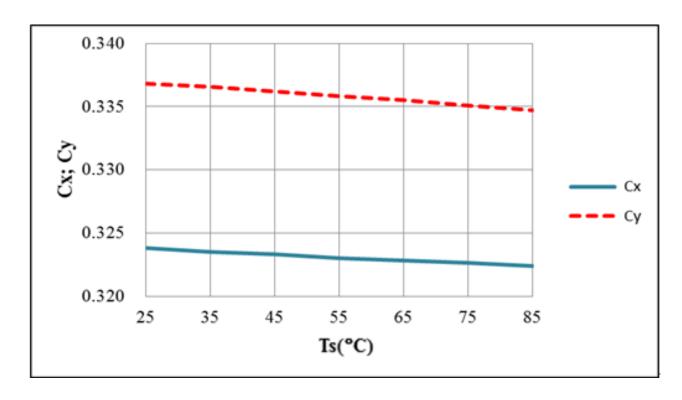
RELATIVE LUMINOUS FLUX VS. CURRENT (T_B = 25 °C)



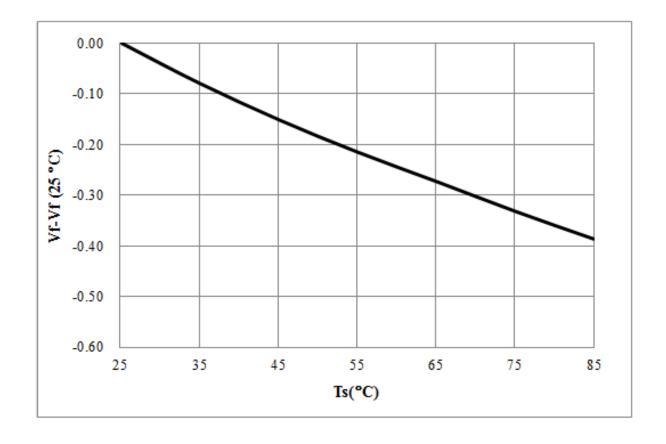
RELATIVE LUMINOUS FLUX VS. TEMPERATURE ($I_F = 1500 \text{ mA}$)



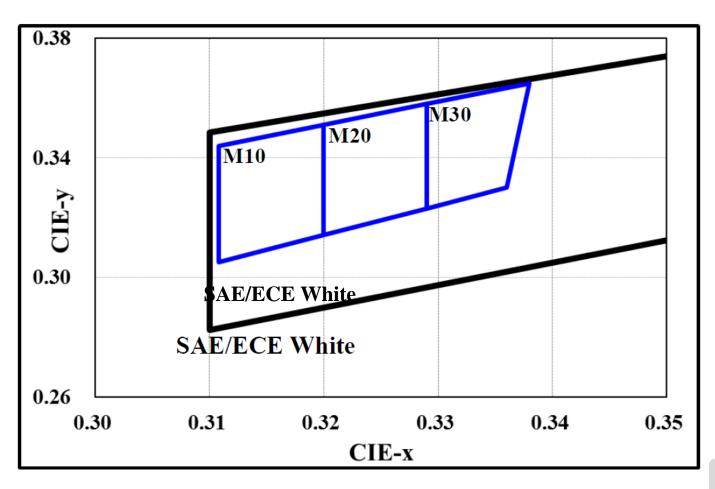
FORWARD VOLTAGE VS. FORWARD CURRENT (T_B = 25 °C)



CHROMATICITY COORDINATE SHIFT (T_B = 25 °C)



CHROMATICITY COORDINATE SHIFT (I_F = 1500 mA)



RELATIVE FORWARD VOLTAGE ($I_F = 1500 \text{ mA}$)

GPI'S STANDARD WHITE CHROMATICITY REGINS PLOTTED ON THE 1931 CIE CURVE

PERFORMANCE GROUPS - CHROMATICITY

Bin Code	х	у
	0.32	0.3511
M40	0.3108	0.344
M10	0.3108	0.305
	0.32	0.3141

Bin Code	x	у
	0.32	0.3511
Man	0.329	0.3581
M20	0.329	0.3231
	0.32	0.3141

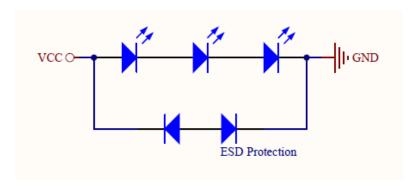
Bin Code	х	у
	0.329	0.3581
M30	0.338	0.365
MISU	0.336	0.33
	0.329	0.3231

Notes:

•GPI maintains a tolerance of ±0.005 on chromaticity (CCx, CCy) measurements.

www.gpiled.com

| 10

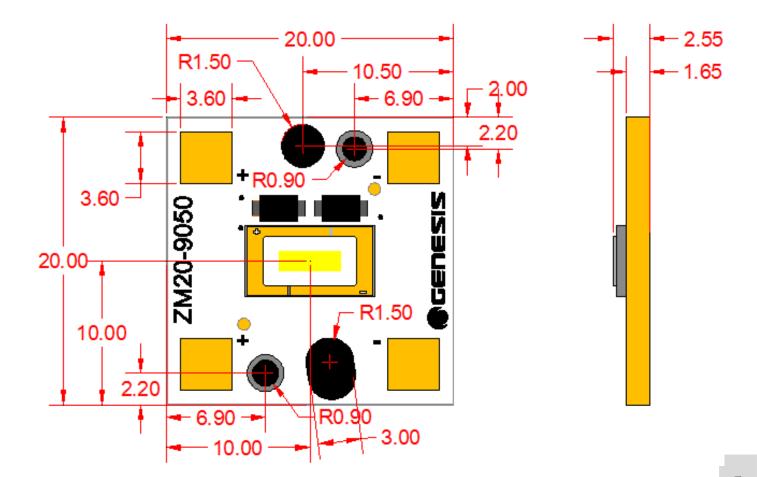

RELIABILITY

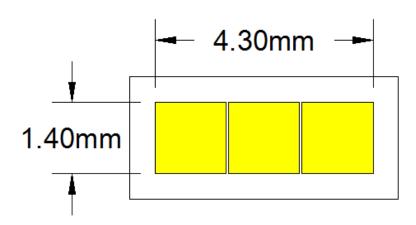
Test Item	Test Conditions	Test Period	Ac/Re
High Temperature Forward Bias (HTFB)	TA=85°C ; IF=1500mA DC	1000 hours	0/1
High Temperature High Humidity Bias (HTHHB)	TA=85°C;85% humidity IF=1500mA DC	1000 hours	0/1
Temperature Cycle (TC)	-40°C / 125°C 15min dwell, 5min transfer	1000 cycles	0/1
Power and Temperature Cycle (PTC)	-40°C / 125°C 10min dwell, 30min transfer ton/off = 2 min IF=1500mA DC	500 hours	0/1

Notes:

- No catastrophic (LED Fail)
- Lumen maintenance > 85%
- Change in Vf < 10%
- Change in white color point $\Delta x \Delta y \pm 0.01$
- · No corrosion
- Moisture Sensitivity Level 1 (IPC/JEDEC J-STD-020)

Electrical Internal Circuit

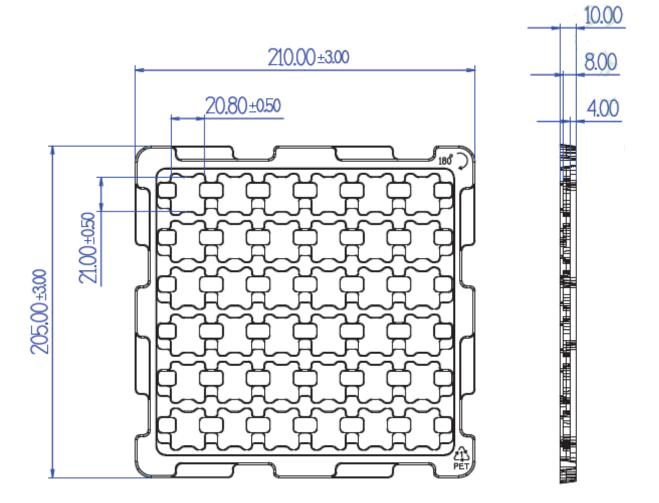

ESD Protection Diode


ELECTRICAL CHARACTERISTICS						
Reverse breakdown voltage at l_T , $l_p = 5ms$ Reverse working voltage Reverse working voltage Reverse current at $l_p = l_p = $						
VBR MIN (V)	IT (mA)	Vrwm MIN (V)	IR (uA)	Iррм (A)	Vc MAX (V)	
15.6	1	14	0.1	8.6	23.2	

www.gpiled.com

MECHANICAL DIMENSIONS

All measurements are ±0.20 mm unless otherwise indicated.



| 11

Tray

36 pcs. per tray

CAUTIONS

1. Moisture Sensitivity

In testing, GPI has found ZM20-3GX to have 1 year floor life in condition <=30C/ 85% relative humidity (RH). Moisture testing included a 168-hr soak at 85C/60% RH followed by 3 times reflow cycles, with visual and electrical inspections at each stage.

GPI recommends keeping ZM20-3GX in their sealed moisture-barrier packaging until immediately prior to use. GPI also recommends returning any unusual LEDs to the re-sealable moisture-barrier bag and closing the bag immediately after use.

2. Handling Precautions

Do not handle LEDs with bare hands, it may contaminate the LED surface and affect optical characteristics. In the worst case, catastrophic failure from excess pressure through wire-bond breaks and package damage may result.

Do not stack assembled PCBs together. Failure to comply can cause the resin portion of the product to be cut, chipped, delaminated and/or deformed. It may cause wire to break, leading to catastrophic failures.

3. Eye safety

Warning: do not look at exposed lamp in operation. Eye injury can result.

4. Static Electricity

Wristbands and anti-electrostatic gloves are strongly recommended and all devices, equipment and machinery must be properly grounded when handling the LEDs, which are sensitive against static electricity and surge.

Precautions are to be taken against surge voltage to the equipment that mounts the LEDs. Unusual characteristics such as significant increase of current leakage, decrease of turn-on voltage or non-operation at a low current can occur when the LED is damaged.

| 13