

PRODUCT DATASHEET

- ► PCB / CHIP LED
- ▶ 0805 (2012) 0.80t
- ► Blue (468nm)

N0B01S14

0805 (2012) 0.80t

Package: PCB / CHIP Top View LED

Forward Current: 20mA Forward Voltage (typ.): 2.9V

Luminous Intensity (typ.): 160mcd@20mA

Colour: Blue

FEATURES:

Dominant Wavelength (typ.): 468nm

Viewing Angle: 140°

Materials:

Die: InGaN

Resin: Epoxy (Water Clear) Operating Temperature: -40~+80°C

Storage Temperature: -40~+85°C

Grouping Parameters:

Forward voltage

Luminous intensity

Dominant wavelength

Soldering Methods: Reflow

MSL Level: acc. to JEDEC Level 3

Packing: 8mm tape with max.3000/reel, ø180mm (7")

0805 (2012) 0.8t

APPLICATIONS:

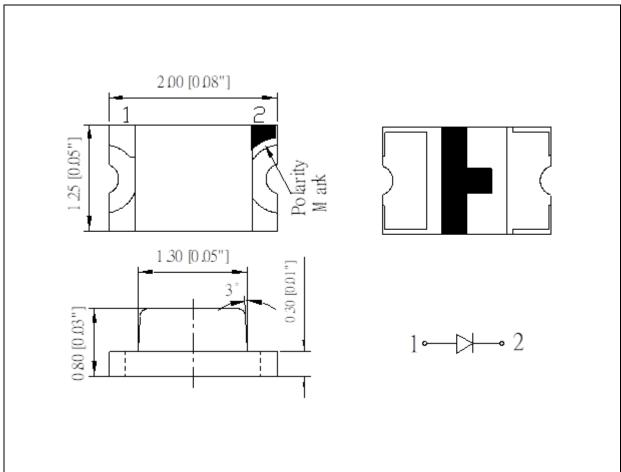
- **Backlighting**
- Indication Light
- Switch light
- Dashboard

CHARACTERISTICS:

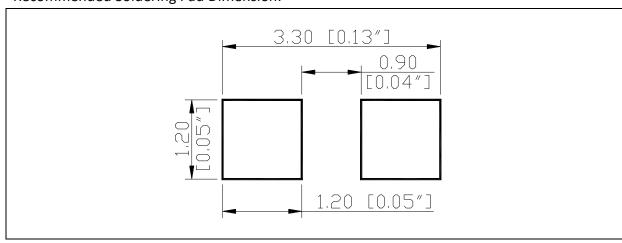
Absolute Maximum Characteristics (T_a=25°C)

Parameter	Symbol	Ratings	Unit
Forward Current	I _F	30	mA
Peak Forward Current Duty 1/8@1KHz	I _{FP}	125	mA
Reverse Voltage	V _R	5	V
Reverse Current @5V	I _R	10	μΑ
Power Dissipation	PD	102	mW
Operating Temperature	T _{OPR}	-40~+80	°C
Storage Temperature	T _{STG}	-40~+85	°C

Electrical & Optical Characteristics (T_a=25°C)


Parameter Symbol		Values			Unit	Test
Parameter	er Symbol	Min.	Тур.	Max.	Unit	Condition
Forward Voltage	V_{F}	2.5	2.9	3.4	V	I _F =20mA
Luminous Intensity	I _V	100	160	320	mcd	I _F =20mA
Dominant Wavelength	λD	465	468	475	nm	I _F =20mA
Peak Wavelength	$\lambda_{ extsf{P}}$		464		nm	I _F =20mA
Spectral Line Half Bandwidth	Δλ		22		nm	I _F =20mA
Viewing Angle	2θ _{1/2}		140		deg	I _F =20mA

 $^{1. \}quad \text{Luminous intensity (Iv) } \pm 15\%, \text{Forward Voltage (VF)} \pm 0.1\text{V}, \text{ Viewing angle} \\ (2\theta_{1/2}) \pm 5\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 1\text{nm} \\ (2\theta_{1/2}) \pm 10\%, \text{ dominant wavelength } \pm 10\%, \text{ dominan$


OUTLINE DIMENSION:

Package Dimension:

- 1. All dimensions are in millimetre (mm).
- 2. Tolerance ±0.2mm, unless otherwise noted.

Recommended Soldering Pad Dimension:

- 1. Dimensions are in millimetre (mm).
- 2. Tolerance ±0.1mm with angle tolerance ±0.5°.

BINNING GROUPS:

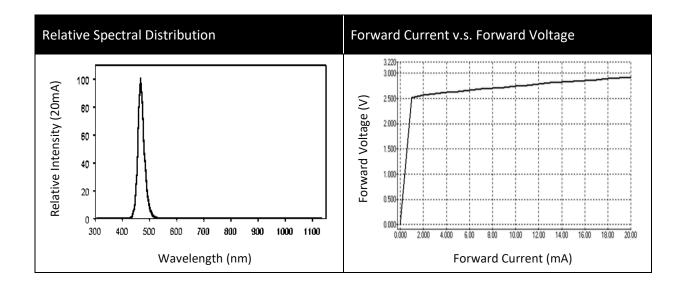
Forward Voltage Classifications ($I_F = 20mA$):

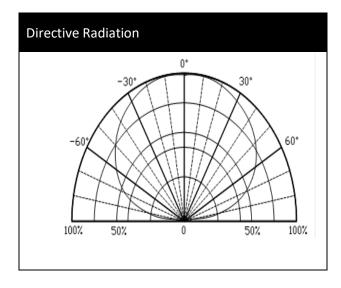
Code	Min.	Max.	Unit
e	2.5	2.8	
f	2.8	3.1	V
g	3.1	3.4	

Luminous Intensity Classifications (IF = 20mA):

Code	Min.	Max.	Unit
J	100	125	
K	125	160	
L	160	200	mcd
M	200	250	
N	250	320	

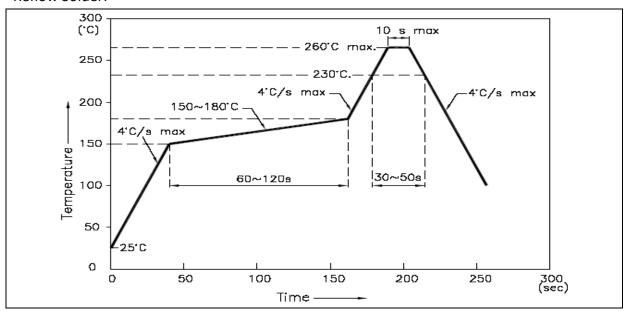
Dominant Wavelength Classifications (IF = 20mA):


Code	Min.	Max.	Unit
G	465	467.5	
Н	467.5	470	
I	470	472.5	nm
J	472.5	475	


Example Group Name on Label:

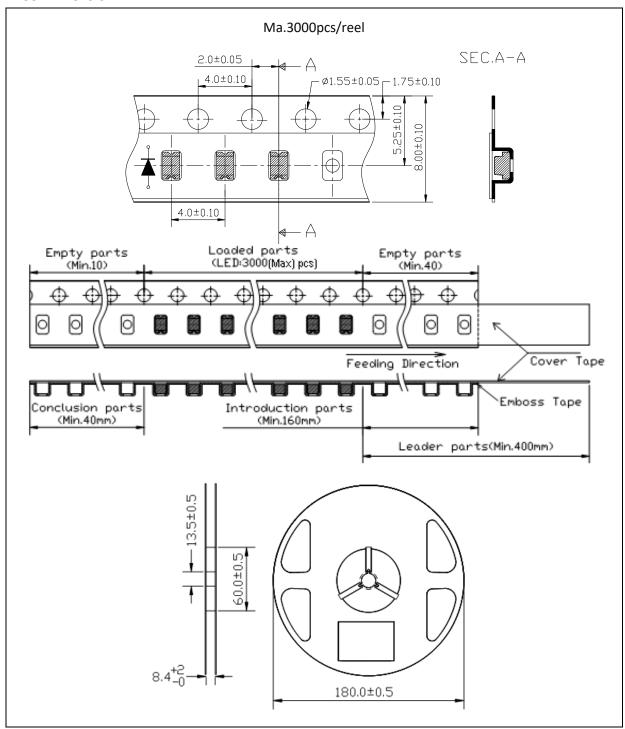
• **fLJ20** = **f** (2.8~3.1V) ► **L** (160~200mcd) ► **J** (472.5~475nm) ► **20** (IF=20mA)

ELECTRO-OPTICAL CHARACTERISTICS:



RECOMMENDED SOLDERING PROFILE:

Reflow Solder:


Note:

- 1. Recommend reflow temperature 245°C. The maximum soldeting temperature should be limited to 260°C.
- 2. Maximum reflow soldering: 2 times.
- 3. Before, during, and after soldering, should not apply stress on the components and PCB board.

PACKING SPECIFICATION:

Reel Dimension:

PRECAUTIONS OF USE:

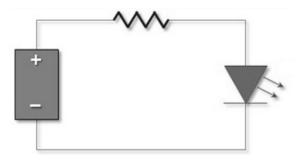
Storage:

It is recommended to store the products in the following conditions:

- Humidity: 60% R.H. Max.
- Temperature: 5°C~30°C (41°F ~86°F).

Shelf life in sealed bag: 12 months at 5°C~30°C and <60% R.H.

Once the package is opened, the products should be used within a week. Otherwise, they should be kept in a damp-proof box with descanting agent <10% R.H. and apply baking before use.


Baking:

It is recommended to bake the LED before soldering if the pack has been unsealed for longer than 24hrs. The suggested baking conditions are as followings:

• 60±5°C x 24-48hrs and <5%RH, taped / reel package.

It's normal to see slight color fading of carrier (light yellow) after baking in process.

Testing Circuit:

Must apply resistor(s) for protection (over current proof).

Cleaning:

Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LED carrier / package. Avoid putting any stress force directly on to the LED lens.

ESD (Electrostatic Discharge):

Static Electricity or power surge will damage the LED. Use of a conductive wrist band or anti-electrosatic glove is recommended when handing the LED all time. All devices, equipment, machinery, work tables, and storage racks must be properly grounded.

In the events of manual working in process, make sure the devices are well protected from ESD at any time.

REVISION RECORD:

Version	Date	Summary of Revision
A1.0	09/04/2015	Datasheet set-up.
A1.1	18/02/2025	Update characteristics.