

VFDP35AW5FFH03Z4

Outline: 3.5*3.5*2.0mm

- ◆ High efficiency
- Good thermal dissipation & optical uniformity

Table of Contents:

Features	1
Product Code	2
Product List	3
Maximum Rating	4 4
Intensity binning	5
Forward Voltage Binning	5
Color coordinate binning	6
Relative Spectral Power Distribution	
Electronic-Optical Characteristics	7
Typical spatial distribution	8
Thermal Design for De-rating	8
Dimensions	9
Suggest Stencil Pattern	
Packing	10
Reflow Profile	12
Precautions	13
Test items and results of reliability	16

Features

- Binning based on ANSI C78.377
- RoHS and REACH-compliant
- MSL2 qualified according to J-STD 020
- InGaN based phosphor-converted LED
- ESD 2KV (HBM : MIL-STD-883 Class 2)

Applications

- Portable lighting
- > Outdoor lighting
- > Indoor lighting
- Commercial lighting
- Industrial lighting
- Decorative lighting
- Automobile lighting
- > Street and tunnel lighting

Product Code

V - F - DP35 - A - W5FF - H - 0 - 3 - Z - 4

1 2

3

4

(5)

6 7

1	2	3	4	⑤
Process type	Category	Specification	Lens code	Dice wavelength & Luminous rank
V: Eutectic process	F: Flip Chip LED	DP35: Ceramic 3535	A: 120°	W5XX: Warm White

6	7	8	9	@
Support code	Zener & High CRI	Cap color code	Module & Lens code	Current code
H: HTCC	0: None Zener	3: Series No.	Z: Molding	4: 350mA

■ Product list

	Luminous Flux (Lm)				Forward											
Color		ic order o @350mA		М	ulated in. 85°C	Typical CCT (K)	Voltage (V)						31		Viewing Angle	Part Number
	Group	Min. @25℃	Min. @85℃	700 mA	1000 mA		Min.	n. Max.								
Warm white	B32	90	76	133	167	1700	2.0	3.4	120°	VFDP35AW5FFH03Z4						
vvaiiii wiiile	B33	100	85	148	187	1700	00 2.8		120	VFDF35AVV3FFH03Z4						

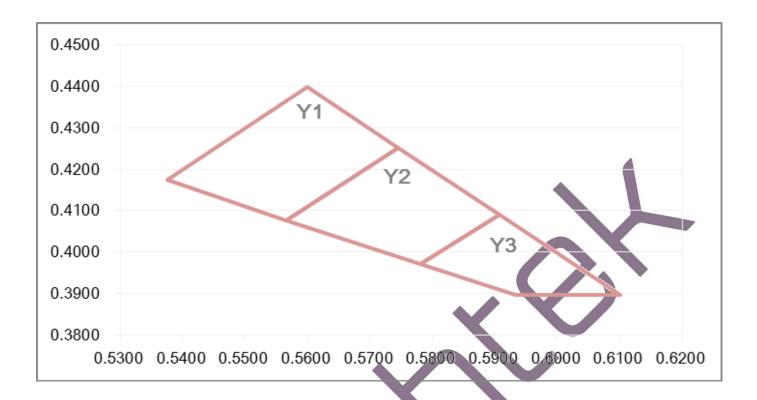
- 1. Forward voltage (V_F) ± 0.05 V ; Luminous flux (Φ_V) $\pm 7\%$; CRI ± 2 ; Viewing angle($2\theta_{1/2}$) $\pm 10^\circ$
- 2. IS standard testing.

■ Maximum Rating (Ta: 25°C)

Characteristics	Symbol	Min.	Typical	Max.	Unit
DC Forward Current ¹	I _F		350	1000	mA
Pulse Forward Current ²	I _{PF}			1500	mA
Reverse Voltage	V _R			-5	V
Reverse Current (5V)	I _R			10	μΑ
Junction Temperature ³	Tj			150	°C
Thermal Resistance Junction / Solder Point	R _{th}		10		°C/W
Storage Temperature Range	T _{stg}	-40	-	100	°C
Soldering Temperature	T _{sol}			250	°C

- 1. For other ambient, limited setting of current will depend on de-rating curves.
- 2. D=0.01s duty 1/10.
- 3. When drive on maximum current, Tj must be kept below 150°C

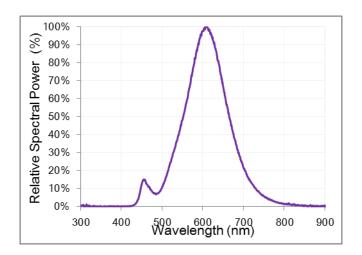
■ Intensity Binning


Bin code (350mA)	Min. Φ _v (Lm)	Max. Φ _ν (Lm)
B32	90	100
B33	100	110

■ Forward Voltage Binning

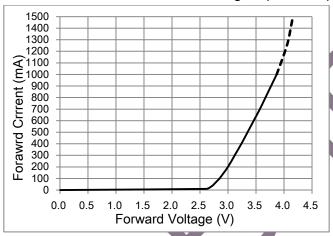
Bin code (350mA)	Min. V _F (V)	Max. V _F (V)
V2830	2.8	3.0
V3032	3.0	3.2
V3234	3.2	3.4

■ Color coordinate binning

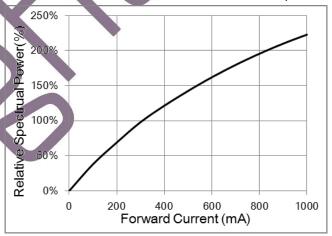


BIN	CIE X	CIE Y	BIN	CIE X	CIE Y	BIN	CIE X	CIE Y
	0.5600	0.4400		0.5745	0.4253		0.5908	0.4090
V4	0.5375	0.4174	VO	0.5566	0.4076	Va	0.5780	0.3972
Y1	0.5566	0.4076	Y2	0.5780	0.3972	Y3	0.5933	0.3896
	0.5745 0.4253		0.5908	0.4090		0.6100	0.3896	

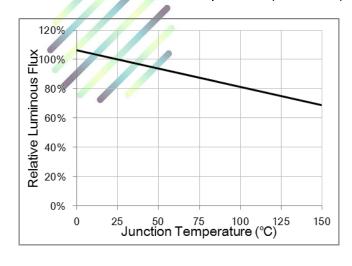
Notes: Chromaticity (CIEx, CIEy) ±0.007

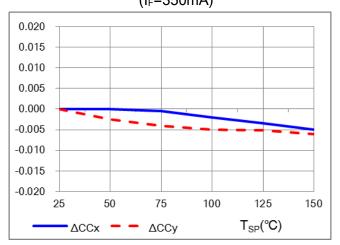


■ Relative spectral power distribution

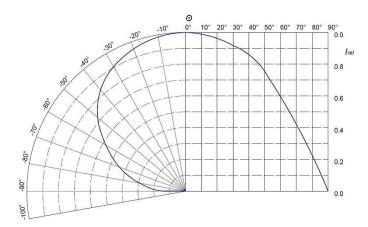


Electronic-Optical Characteristics

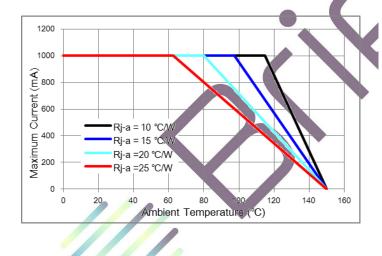

Forward Current vs. Forward Voltage (Ta=25°C)

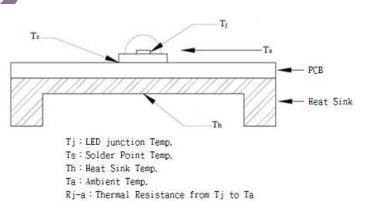

Relative luminous Flux vs. Forward Current (T_a=25°C)

Relative Flux vs. Junction Temperature (I_F=350mA)

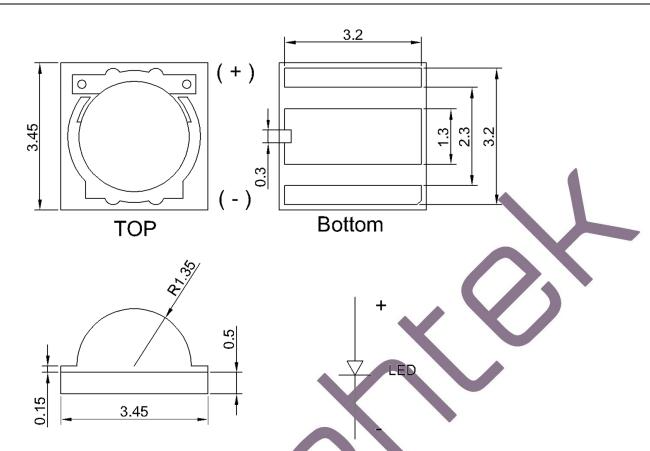


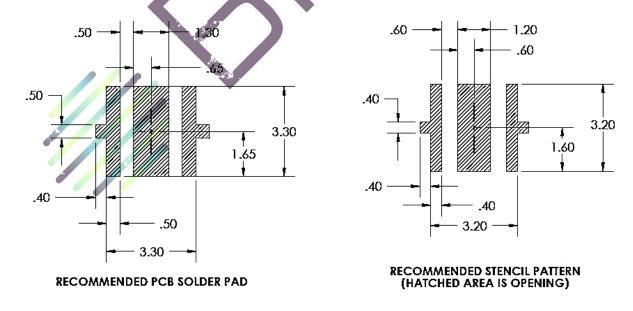
Relative Chromaticity vs. Ambient temperture (I_F=350mA)




■ Typical Spatial Distribution

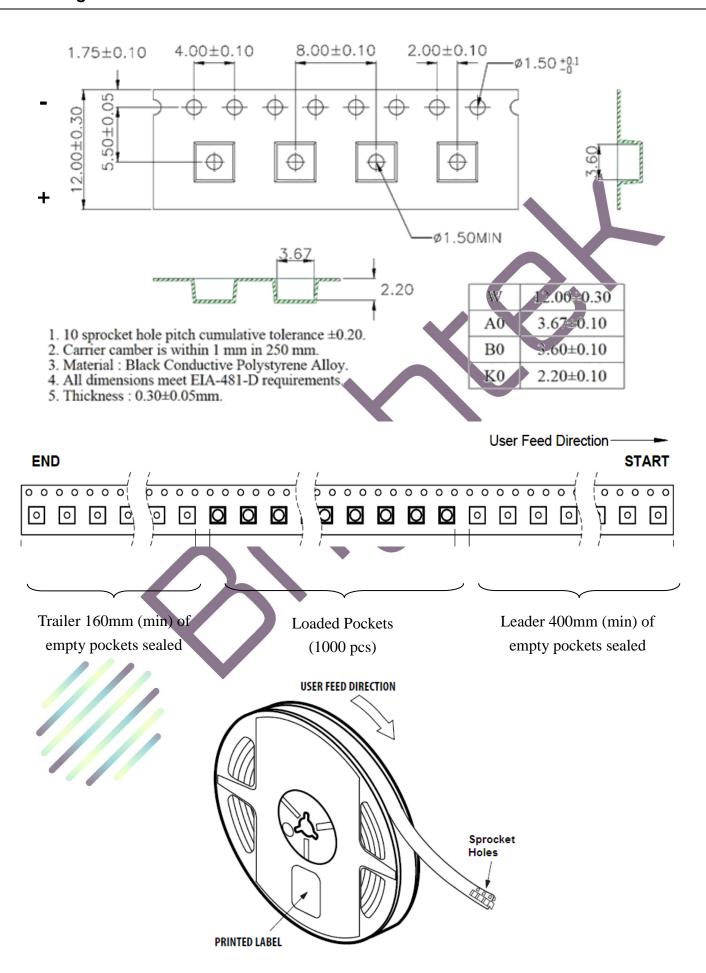
Thermal Design for De-rating

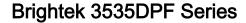

The maximum forward current is determined by the thermal resistance between the LED junction and ambient. It is crucial for the end product to be designed in a manner that minimizes the thermal resistance from the solder point to ambient in order to optimize lamp life and optical characteristics.



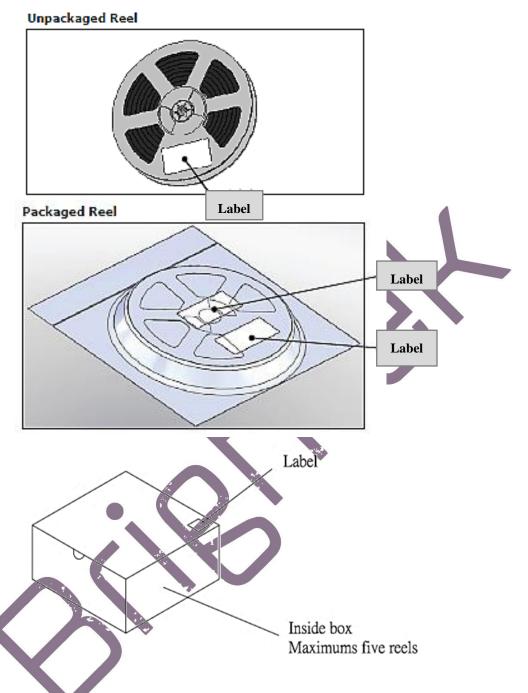
■ Dimensions

- § All dimensions are in millimeters,
- § Tolerance is ±0.13mm unless other specified

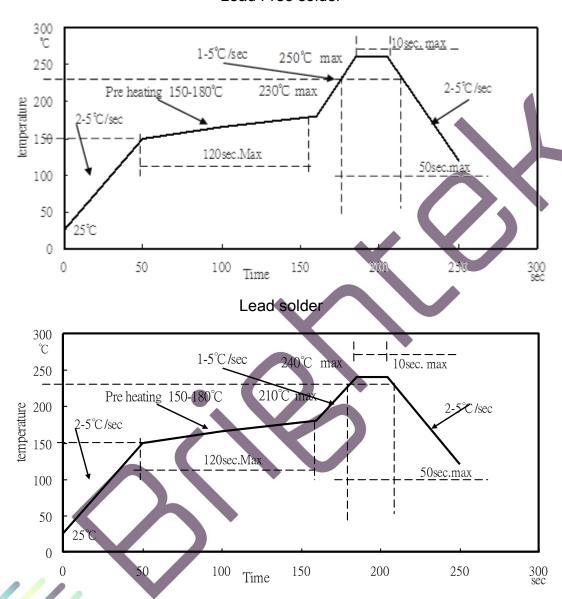

■ Suggest Stencil Pattern (Recommendations for reference)



§ Suggest stencil t =0.12 mm



■ Packing

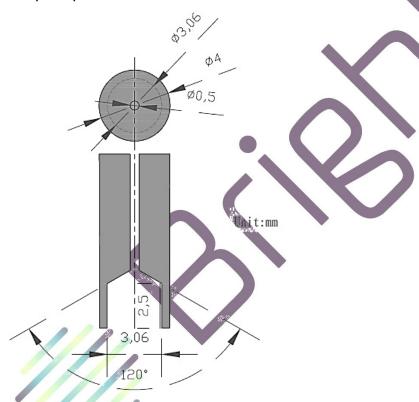

- 1. Each reel (minimum number of pieces is 100 and maximum is 1000 for 120 degree product) is packed in a moisture-proof bag along with a packs of desiccant and a humidity indicator card.
- 2. A maximum of 5 moisture-proof bags are packed in an inner box (size: 260mm x 230mm x 100mm ±5mm).
- 3. A maximum of 4 inner boxes are put in an outer box (size: 480mm x 275mm x 215mm ±5mm).
- 4. Part No., Lot No., quantity should be indicated on the label of the moisture-proof bag and the cardboard box.

■ Reflow Profile

IR Reflow Soldering Profile

Lead Free solder

- 1. The recommended reflow temperature is 240°C(±5°C). The maximum soldering temperature should be limited to 250°C.
- 2. Do not stress the silicone resin while it is exposed to high temperature.
- 3. The reflow process should not exceed 3 times.

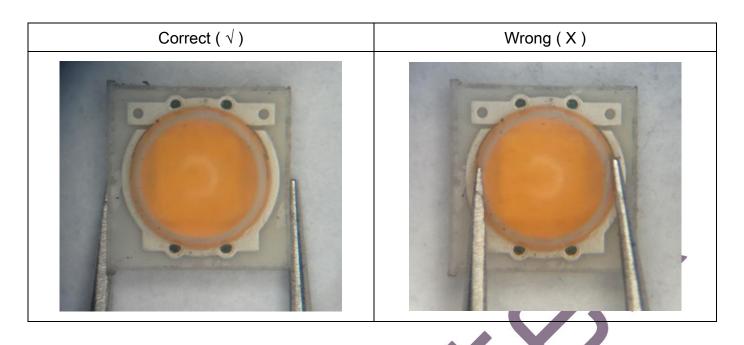


Precautions

- 1. Recommendation for using LEDs
 - 1.1 The lens of LEDs should not be exposed to dust or debris. Excessive dust and debris may cause a drastic decrease in the luminosity.
 - 1.2 Avoid mechanical stress on LED lens.
 - 1.3 Do not touch the LED lens surface. It would affect the optical performance of the LED due to the LED lens' damage.
 - 1.4 Pick & place tools are recommended for the remove of LEDs from the factory tape & reel packaging

2. Pick & place nozzle

The pickup tool was recommended and shown as below

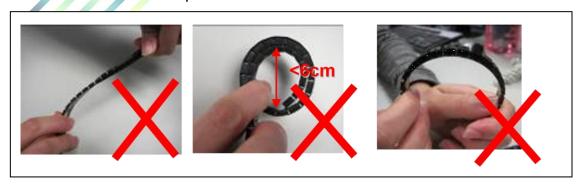

3. Lens handling

Please follow the guideline to pick LEDs.

- 3.1 Use tweezers to pick LEDs.
- 3.2 Do not touch the lens by using tweezers.
- 3.3 Do not touch lens with fingers.
- 3.4 Do not apply more than 4N (400gw) directly onto the lens.

Brightek 3535DPF Series

4. Lens cleaning


In the case which a small amount of dirt and dust particles remain on the lens surface, a suitable cleaning solution can be applied.

- 4.1 Try a gentle wiping with dust-free cloth.
- 4.2 If needed, use dust-free cloth and isopropyl alcohol to gently clean the dirt from the lens surface.
- 4.3 Do not use other solvents as they may directly react with the LED assembly.
- 4.4 Do not use ultrasonic cleaning which will damage the LEDs.

5. Carrier tape handling

The following items are recommended when handling the carrier tape of LEDs.

- 5.1 Do not twist the carrier tape.
- 5.2 The inward bending diameter should not be smaller than 6cm for each carrier tape.
- 5.3 Do not bend the tape outward.

6. Storage

6.1 The moisture-proof bag is sealed:

The LEDs should be stored at 30°C or less and 90%RH or less. And the LEDs are limited to use within one year, while the LEDs is packed in moisture-proof package with the desiccants inside.

6.2 The moisture-proof bag is opened:

The LEDs should be stored at 30°C or less and 60%RH or less. Moreover, the LEDs are limited to solder process within 168hrs. If the humidity indicator card shows the pink color in 10% even higher or exceed the storage limiting time since opened, that we recommended to baking LEDs at 60°C at least 24hrs. To seal the remainder LEDs return to the moisture-proof bag, it's recommended to be with workable desiccants.

■ Test Items and Results of Reliability

Test Item	Test Conditions	Duration/ Cycle	Number of Damage	Reference
Thermal Shock	–40°C 30min ↑↓5min 125°C 30min	100 cycles	0/22	AEC-Q101
High Temperature Storage	T _a =100°C	1000 hrs	0/22	EIAJ ED-4701 200 201
Humidity Heat Storage	T _a =85°C RH=85%	1000 hrs	0/22	EIAJ ED-4701 100 103
Low Temperature Storage	T _a =-40°C	1000 hrs	0/22	EIAJ ED-4701 200 202
Life Test	Life Test T _a =25°C If=350mA		0/22	
High Humidity Heat Operation	85°C RH=85% If=350mA	1000 hrs	0/22	
High Temperature Operation	T _a =85°C If=350mA	1000 hrs	0/22	
ESD(HBM)	2KV at 1.5kΩ;100pf	3 Times	0/22	MIL-STD-883

Failure Criteria							
Item	Criteria for Judgm			Judgment			
item	Symbol	Condition	Min	Max			
Forward Voltage	V _F	If=350mA	-	USL¹×1.1			
Reverse Current	I _R	V _R =5V	-	100μΑ			
Luminous Intensity	I _v	If=350mA	LSL ² ×0.7	-			

Notes:

USL: Upper specification level
 LSL: Lower specification level