

V51519V20CPN1

◆ Outline: 1.5*1.9*0.8mm

♦ High Power Output And High efficiency

♦ Good thermal dissipation & Optical uniformity

Table of Contents:

1 catules	
Product Code	3
Typical Product Characteristics	- 4
Maximum Rating	- 5
Luminous Intensity Binning	- 6
Dominant Wavelength Binning	
Forward Voltage Binning	6
Relative Spectral Power Distribution	- 7
Typical Diagram Characteristics of Radiation	7
Electronic-Optical Characteristics	- 8
Thermal Design for De-rating	- 8
Dimensions	- 9
Suggest Stencil Pattern	- 9
Packaging	10
Reflow profile	12
Precautions	13
Test items and results of reliability	15

Features

- RoHS and REACH-compliant
- MSL2 qualified according to JEDEC J-STD 020
- ESD 2KV (HBM: ANSI/JEDEC JS-001 Class 2)
- Reliability Test: AEC Q-102qualified

Applications

Automotive Exterior Lighting

■ Product Code

V5 - 1519 - V20 - C - P - N1

1

2

(3)

4

6

1)	2	3	4	(5)	<u></u>
Process Type	Lead Frame Size	Dice wavelength	Cap Color	Spectral Condition Code	Flow Code
V5 : special product	1519: 1.5* 1.9mm	V20: red	C: water transparent	P:500mA	N: no zener 1: no expression above meaning for company

■ Typical Product Characteristics(Ta=25°C)

T4 ave	Crumb al		Value			Test
Item	Symbol	Min.	Тур.	Max.	Unite	Condition
Forward Voltage ¹	V_{F}	2.2		2.8	V	I _F =500mA
Reverse Current	I_R			10	μΑ	V _R =5V
Luminous Intensity ²	Φ	38		76	lm	I _F =500mA
Viewing Angle ³	$2\theta_{1/2}$		120		deg	I _F =500mA
Dominant Wavelength	WLD	620		630	nm	I _F =500mA

- 1. The above forward voltage measurement allowance tolerance is $\pm 0.05 V$
- 2. The above luminous flux measurement allowance tolerance $\pm 7\%$
- 3. The above Viewing angle (2 $\theta_{1/2}$) measurement allowance tolerance $\pm 10^{\circ}$
- 4. IS standard test.

■ Maximum Rating ($Ta = 25^{\circ}C$)

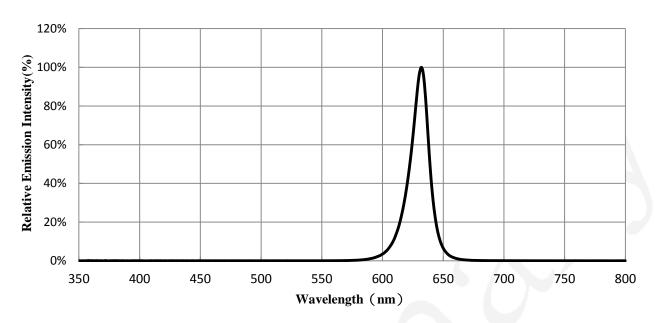
Characteristics	Symbol	Min.	Тур.	Max.	Unit
DC Forward Current ¹	I_{F}			1000	mA
Pulse Forward Current ²	I_{PF}			1500	mA
Reverse Voltage	V_R			5	V
Junction Temperature ³	T_{J}			125	$^{\circ}$
Thermal Resistance Junction/ Solder Point	R _{THJ-S}		5		°C/W
Operating Temperature Range	T _{OPR}	-40	-	105	$^{\circ}$ C
Storage Temperature Range	T _{STG}	-40	-	105	$^{\circ}$
Soldering Temperature	T_{SD}			260	$^{\circ}$ C

- 1. For other ambient, limited setting of current will depend on de-rating curves.
- 2. Duty 1/10, pulse width 0.1ms
- 3. When drive on maximum current , T_J must be kept below $125^\circ\!\text{C}$

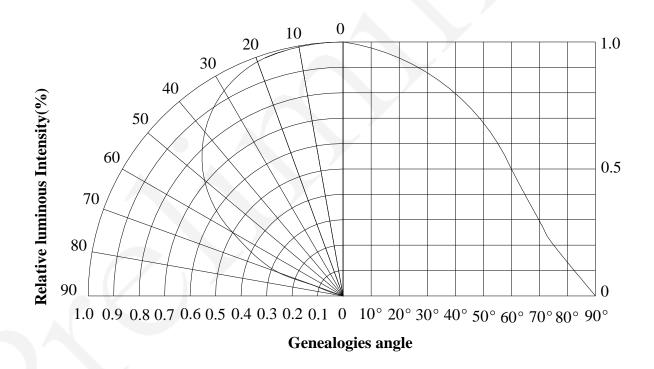
■ Dominant Wavelength Binning (IF=500mA)

Bin Code	Min. λ _d (nm)	Max. λ _d (nm)
V2	620	625
V3	625	630

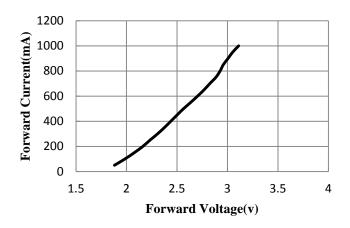
■ Luminous Intensity Binning (IF=500mA)

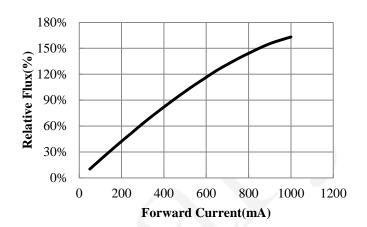

Bin Code	Min. Φ _v (Lm)	Max. Φ _v (Lm)
19	38	44
20	44	50
21	50	58
22	58	66
23	66	76

■ Forward Voltage Binning (IF=500mA)

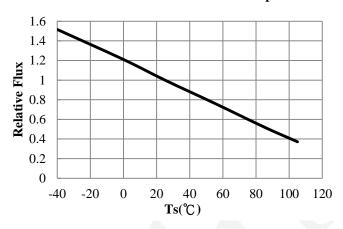

Bin Code	Min. V _F (V)	Max. V _F (V)
G	2.2	2.4
H	2.4	2.6
J	2.6	2.8

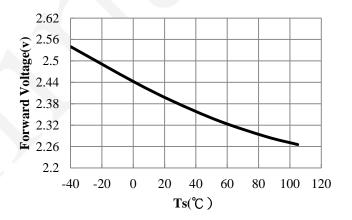
■ Relative Spectral Power Distribution


■ Typical Diagram Characteristics of Radiation



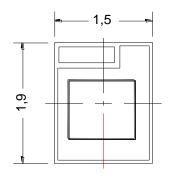
■ Electronic-Optical Characteristics

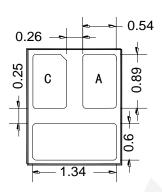

Forward Current vs. Forward Voltage

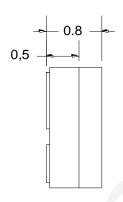

Relative Flux vs. Forward Current

Relative Luminous Flux vs. Solder Temperature

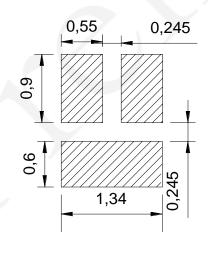
Forward Voltage vs. Solder Temperature

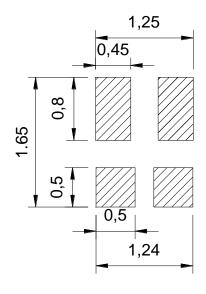

■ Thermal Design for De-rating


The maximum forward current is determined by the thermal resistance between the LED junction and solder point. It is crucial for the end product to be designed in a manner that minimizes the thermal resistance from the solder point to ambient in order to optimize lamp life and optical characteristics.



Dimensions



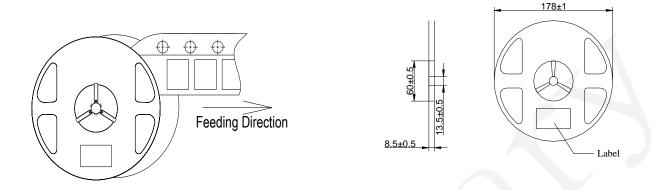


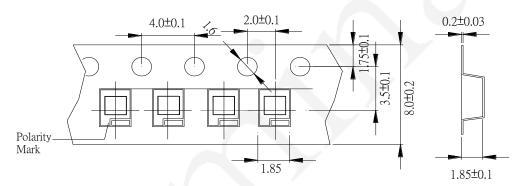
- § All dimensions are in millimeters.
- § Tolerance is ± 0.13 mm unless other specified.

■ Suggest Stencil Pattern (Recommendations for reference)

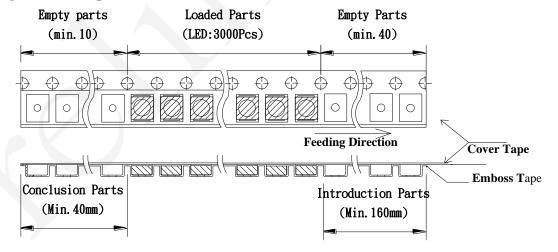
RECOMMENDED PCB SOLDER PAD

RECOMMENDED STENCIL PATTERN (HATCHED AREA IS OPENING)

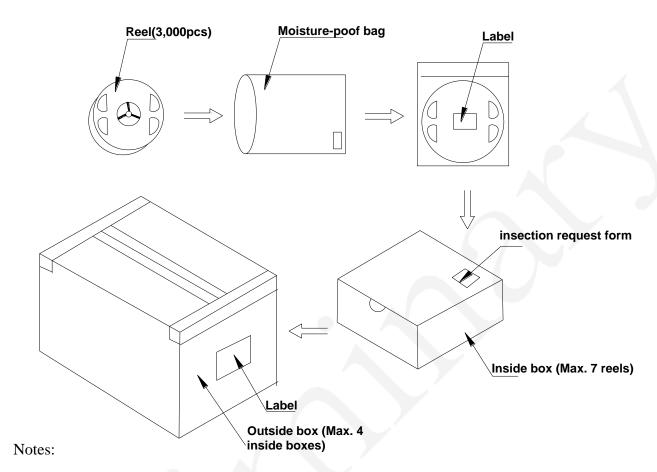

§ Suggest stencil t =0.12 mm


Packaging

• Feeding Direction (Unit: mm)

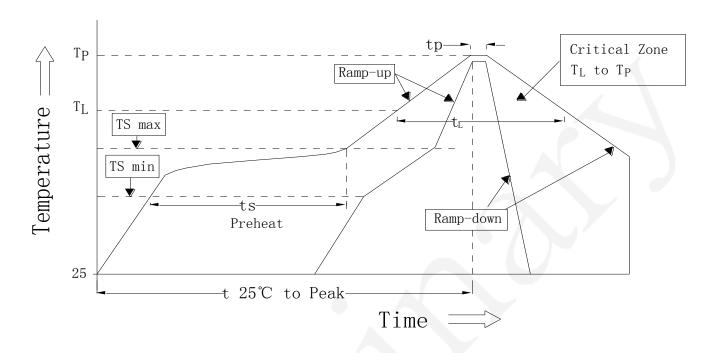

Dimensions of Reel (Unit: mm)

• Dimensions of Tape (Unit: mm)


Arrangement of Tape

- 1. Empty component pockets are sealed with top cover tape
- 2. The max loss number of SMD is 2pcs;
- 3. The cathode is oriented towards the tape sprocket hole in accordance with ANSI/EIA RS-481 specifications;
- 4. 3,000pcs per reel;
- 5. The remainder packing in multiples of 500pcs.

Packaging



Reeled product (max.3,000) is packed in a sealed moisture-proof bag. Seven bags are packed in an inner box (size: about 260 X 230 X 100 mm) and four inner boxes are in an outer box (size: about 480 X 275 X 215 mm). On the label of moisture-poof bag, there should be the information of Part No., Lot No. and quantity number; also the total quantity number should be on inspection request form on outer box.

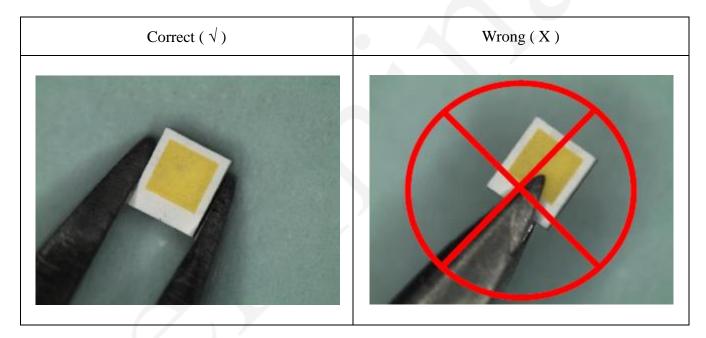
■ Reflow Profile

SMT Reflow Soldering Profile

Dua Cla Factorea	Crosshal	Pb-Free (SnAgCu) Assembly			T7:4
Profile Feature	Symbol	Min.	Recommendation	Max.	Unit
Ramp-up rate to preheat (25°C to 150°C)			2	3	K/s
Time t_S $(T_{S \text{ min}} \text{ to } T_{S \text{ max}})$	t_{S}	60	100	120	S
Ramp-up rate to peak $(T_{S \text{ max}} \text{ to } T_P)$			2	3	K/s
Liquidus temperature	$T_{\rm L}$		217		°C
Time above liquidus temperature	$t_{ m L}$		80	100	S
Peak temperature	T_{P}		245	260	°C
Time within 5 °C of the specified peak temperature T_P - 5 K	t _P	10	20	30	s
Ramp-down Rate (T _P to 100 °C)			3	4	K/s
Time 25 °C to T _P				480	S

- 1. Do not stress the silicone resin while it is exposed to high temperature.
- 2. The reflow process should not exceed 2 times.

Precautions


1. Recommendation for using LEDs

- 1.1 The lens of LEDs should not be exposed to dust or debris. Excessive dust and debris may cause a drastic decrease in the luminosity.
- 1.2 Avoid mechanical stress on LED lens.
- 1.3 Do not touch the LED lens surface. It would affect the optical performance of the LED due to the LED lens' damage.
- 1.4 Pick & place tools are recommended for the remove of LEDs from the factory tape & reel packaging

2. Lens handling

Please follow the guideline to pick LEDs.

- 2.1 Use tweezers to pick LEDs.
- 2.2 Do not touch the lens by using tweezers.
- 2.3 Do not touch lens with fingers.
- 2.4 Do not apply more than 4N (400gw) directly onto the lens.

3. Lens cleaning

In the case which a small amount of dirt and dust particles remain on the lens surface, a suitable cleaning solution can be applied.

- 3.1 Try a gentle wiping with dust-free cloth.
- 3.2 If needed, use dust-free cloth and isopropyl alcohol to gently clean the dirt from the lens surface.
- 3.3 Do not use other solvents as they may directly react with the LED assembly.
- 3.4 Do not use ultrasonic cleaning which will damage the LEDs.

4. Carrier tape handling

The following items are recommended when handling the carrier tape of LEDs.

- 4.1 Do not twist the carrier tape.
- 4.2 The inward bending diameter should not be smaller than 6cm for each carrier tape.

4.3 Do not bend the tape outward.

5. Storage

- 5.1 The moisture-proof bag is sealed:
 - The LEDs should be stored at 30°C or less and 90%RH or less. And the LEDs are limited to use within one year, while the LEDs is packed in moisture-proof package with the desiccants inside.
- 5.2 The moisture-proof bag is opened:
 - The LEDs should be stored at 30°C or less and 60%RH or less. Moreover, the LEDs are limited to solder process within 168hrs. If the humidity indicator card shows the pink color in 10% even higher or exceed the storage limiting time since opened, that we recommended to baking LEDs at 60°C at least 24hrs. To seal the remainder LEDs return to the moisture-proof bag, it's recommended to be with workable desiccants.

■ Test Items and Results of Reliability

Test Item	Test Conditions	Duration/ Cycle	Number of Damage	Reference
Thermal Shock	-40°C 30min ↑↓5min 105°C 30min	1000 cycles	0/26	JESD22 A-104
High Temperature Storage	T_a =105 $^{\circ}$ C	1000 hrs	0/26	JESD22 A-103B
Low Temperature Storage	T_a =-40 $^{\circ}$ C	1000 hrs	0/26	JESD22 A-119
Life Test	$T_a=25^{\circ}C$ $If=1000mA$	1000 hrs	0/26	JESD22 A-108
High Humidity Heat Operation	85°C RH=85% If=700mA	1000 hrs	0/26	JESD22 A-101
High Temperature Operation	T _a =105°C If=700mA	1000 hrs	0/26	JESD22 A-108C
ESD(HBM)	2KV at 1.5kΩ;100pF	3 times	0/30	ANSI/JEDEC JS-001

Failure Criteria									
Itom	Cromb al	Criteria for Judgment							Judgment
Item	Symbol	Condition	Min	Max					
Forward Voltage	$ m V_{F}$	If=500mA	-	USL ¹ ×1.1					
Reverse Current	I_R	$V_R = 5V$	-	10μΑ					
Radiant Power	P_{O}	If=500mA	LSL ² ×0.7	-					

Notes

USL: Upper specification level
 LSL: Lower specification level