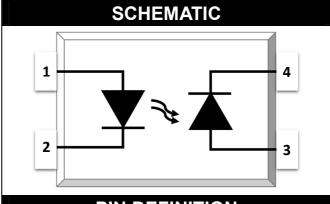
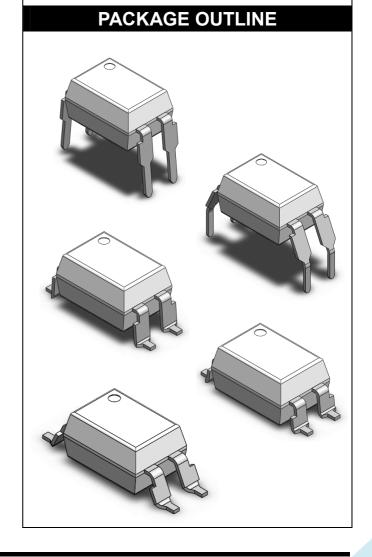


Description


The TD618 series combine an AlGaAs infrared emitting diode as the emitter which is optically coupled to a photo diode in a plastic DIP4 package with different lead forming options. With the robust coplanar double mold structure, TD618 series provide the most stable isolation feature.

Features

- High isolation 5000 VRMS
- DC input with PD output
- Operating temperature range 55 °C to 110 °C
- REACH compliance
- Halogen free
- MSL class 1
- Regulatory Approvals (Pending Approved)
 - UL UL1577
 - VDE EN60747-5-5(VDE0884-5)
 - CQC GB4943.1, GB8898


Applications

- Low cost analog isolation
- Monitor motor supply voltage
- Digital telephone isolation
- Transducer isolation

PIN DEFINITION

- 1. LED Anode
- 2. LED Cathode
 - 3. PD Anode
- 4. PD Cathode

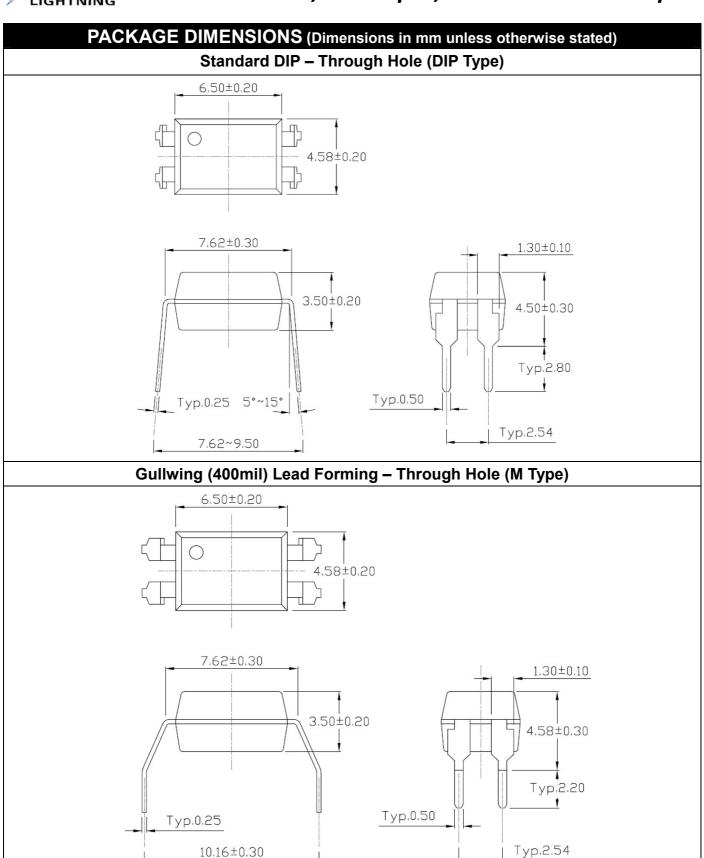
ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	VALUE	UNIT	NOTE		
INPUT						
Forward Current	lf	60	mA			
Peak Forward Current	IFP	1	Α	1		
Reverse Voltage	VR	6	V			
Input Power Dissipation	Pı	100	mW			
OUTPUT						
Output Photodiode Voltage	V_{PD}	80	V			
COMMON						
Total Power Dissipation	Ptot	200	mW			
Isolation Voltage	Viso	5000	Vrms	2		
Operating Temperature	Topr	-55~110	°C			
Storage Temperature	Tstg	-55~150	°C			
Soldering Temperature	Tsol	260	°C			

Note 1. 100µs pulse, 100Hz frequency

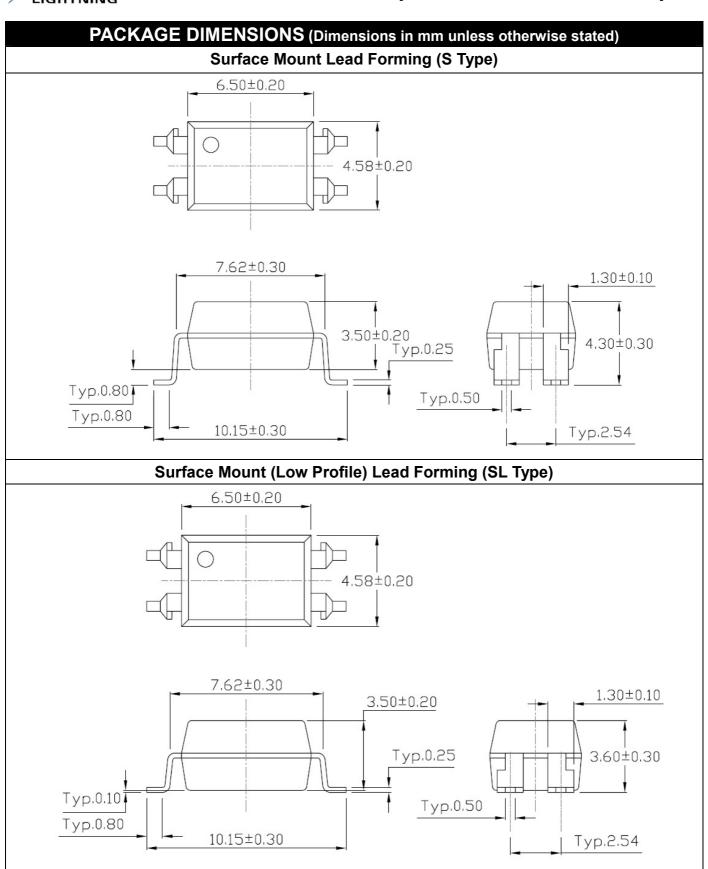
Note 2. AC For 1 Minute, R.H. = $40 \sim 60\%$

	ELECTRI	CAL OPT	ΓICAL	CHA	RAC	TERI	STICS at Ta=25°C	
PARAME	TER	SYMBOL	MIN	TYP.	MAX.	UNIT	TEST CONDITION	NOTE
INPUT								
Forward V	oltage	VF	-	1.24	1.4	V	IF=10mA	
Reverse C	Current	IR	-	-	10	μA	VR=6V	
Input Capa	Input Capacitance		-	10	-	pF	V=0, f=1kHz	
OUTPUT								
Photo D Leakage C		I _{LK}	1	0.5	25	nA	VPD=15V, IF=0	
Photo D Breakdown	iode	BV _{RPD}	80	-	-	V	IR=0.1mA, IF=0	
TRANSFER CHARACTERISTICS								
Current Transfer Ratio	TD618	CTR	0.5	-	1	%	IF=10mA, 0V <vpd<15v< td=""><td></td></vpd<15v<>	
Photo Diode Capacitance		C _{PD}	-	22	-	pF	V=0, f=1kHz	
Isolation Resistance		Riso	10^12	10^14	-	Ω	DC500V, 40 ~ 60% R.H.	
Floating Capacitance		Сю	ı	0.4	1	pF	V=0, f=1MHz	

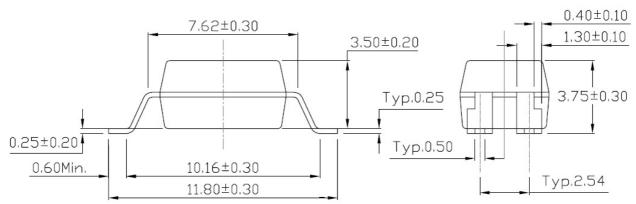
Document No:Preliminary Rev: 0.1 Release Date: 2018/11/7

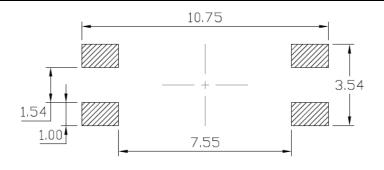


CHARACTERISTIC CURVES Fig.1 Forward Current Fig.2 Photo Diode Leakage Current vs. Forward Voltage vs. Ambient Temperature 100 10000 1000 10 85°C 25°C I_F (mA) I_{LK} (nA) -55°C 0.9 1.0 1.3 1.4 1.5 1.6 T_A (°C) Fig.3 Normalized Current Transfer Ratio Fig.4 Normalized Current Transfer Ratio vs. Photo Diode Voltage vs. Forward Current 1.4 1.2 1.2 1.0 1.0 8.0 Normalized CTR Normalized CTR 0.6 Normalized to V_{PD}=5V 0.2 Normalized to I₌=10mA 0.2 I_F=10mA T_A=25°C V_{PD}=5V T_A=25°C 0.0 0.0 V_{PD} (V) I_E (mA) Fig.5 Normalized Current Transfer Ratio vs. Ambient Temperature 1.2 1.0 Normalized CTR 0.6 Normalized to T_A=25°C 0.2 $I_F = 10 \text{mA} \text{ V}_{PD} = 5 \text{V}$ 0.0 <u></u>-60 -20 20 40

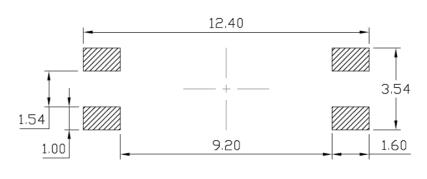

Document No:Preliminary Rev: 0.1 Release Date: 2018/11/7

 T_A (°C)



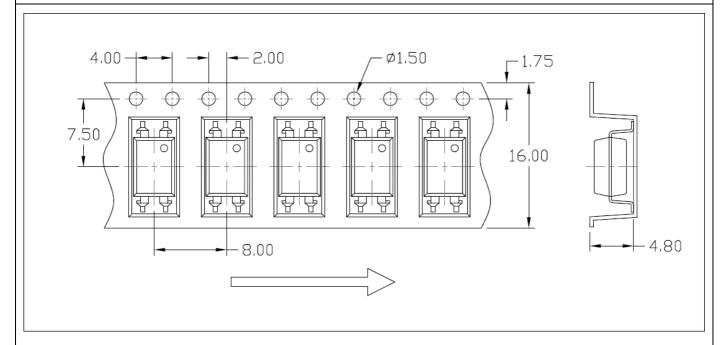


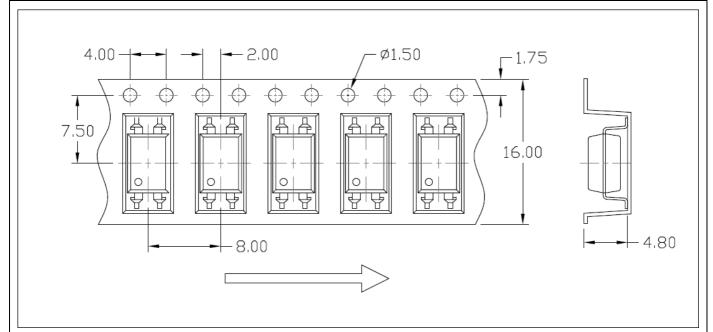
PACKAGE DIMENSIONS (Dimensions in mm unless otherwise stated) Surface Mount (Gullwing) Lead Forming (SLM Type)



RECOMMENDED SOLDER MASK (Dimensions in mm unless otherwise stated)

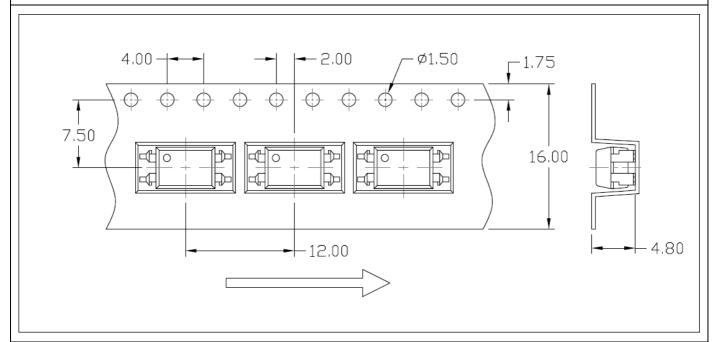
Surface Mount Lead Forming & Surface Mount (Low Profile) Lead Forming

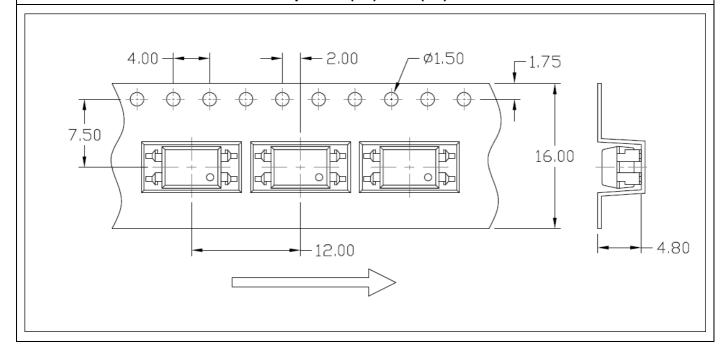

Surface Mount (Gullwing) Lead Forming



CARRIER TAPE SPECIFICATIONS (Dimensions in mm unless otherwise stated)

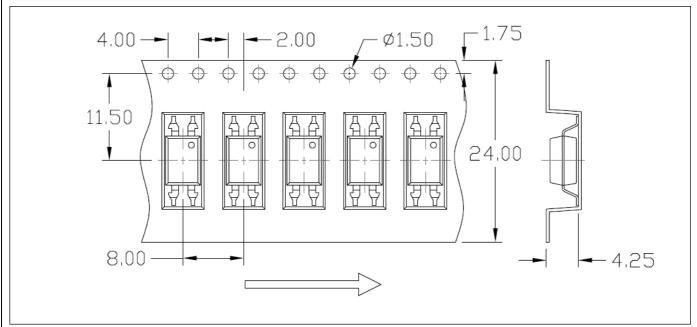
Option S(T1) & SL(T1)


Option S(T2) & SL(T2)

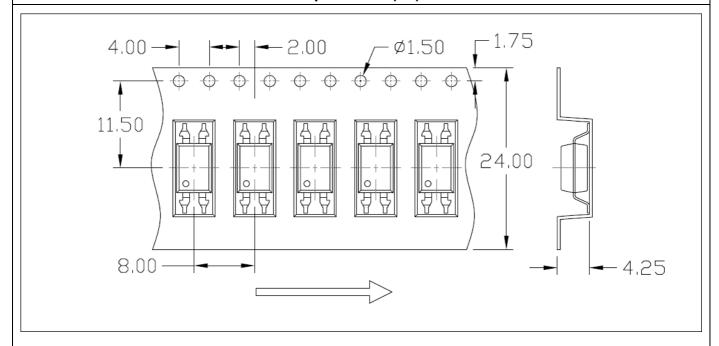


CARRIER TAPE SPECIFICATIONS (Dimensions in mm unless otherwise stated)

Option S(T3) & SL(T3)



Option S(T4) & SL(T4)



CARRIER TAPE SPECIFICATIONS (Dimensions in mm unless otherwise stated) Option SLM(T1)

Option SLM(T2)

ORDERING AND MARKING INFORMATION

MARKING INFORMATION

TD: Company Abbr.

F: Leadframe Option

618 : Part Number

X : CTR Rank V : VDE Option

Y : Fiscal Year

A : Manufacturing Code

WW : Work Week

ORDERING INFORMATION

TD816XN(Y)(Z)-FGV

TD – Company Abbr.

618 – Part Number

Y – Lead Form Option (M/S/SL/SLM/None)

Z – Tape and Reel Option (T1/T2/T3/T4)

F – Leadframe Option (F:Iron, None:Copper)

G - Green

V – VDE Option (V or None)

Packing Quantity

i acking quantity				
Option	Description	Quantity		
None	Standard 4 Pin Dip	100 Units/Tube		
М	Gullwing (400mil) Lead Forming	100 Units/Tube		
S(T1)	Surface Mount Lead Forming – With Option 1 Taping	1500 Units/Reel		
S(T2)	Surface Mount Lead Forming – With Option 2 Taping	1500 Units/Reel		
S(T3)	Surface Mount Lead Forming – With Option 3 Taping	1000 Units/Reel		
S(T4)	Surface Mount Lead Forming – With Option 4 Taping	1000 Units/Reel		
SL(T1)	Surface Mount (Low Profile) Lead Forming– With Option 1 Taping	1500 Units/Reel		
SL(T2)	Surface Mount (Low Profile) Lead Forming – With Option 2 Taping	1500 Units/Reel		
SL(T3)	Surface Mount (Low Profile) Lead Forming– With Option 3 Taping	1000 Units/Reel		
SL(T4)	Surface Mount (Low Profile) Lead Forming – With Option 4 Taping	1000 Units/Reel		
SLM(T1)	Surface Mount (Gullwing) Lead Forming– With Option 1 Taping	1500 Units/Reel		
SLM(T2)	Surface Mount (Gullwing) Lead Forming – With Option 2 Taping	1500 Units/Reel		

Document No:Preliminary Rev: 0.1 Release Date: 2018/11/7

IPC-020d-5-1

T_{smin}

25

DIP4, DC Input, Linear Photo Coupler

REFLOW INFORMATION **REFLOW PROFILE** Supplier T_p ≥ T_c User T_D ≤ T_C T_C -5°C Supplier tp Tp T_c -5°C Max. Ramp Up Rate = 3°C/s Max. Ramp Down Rate = 6°C/s Temperature T_L T_{smax} **Preheat Area**

Profile Feature	Sn-Pb Assembly Profile	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	100	150°C
Temperature Max. (Tsmax)	150	200°C
Time (ts) from (Tsmin to Tsmax)	60-120 seconds	60-120 seconds
Ramp-up Rate (tL to tP)	3°C/second max.	3°C/second max.
Liquidous Temperature (TL)	183°C	217°C
Time (tL) Maintained Above (TL)	60 - 150 seconds	60 – 150 seconds
Peak Body Package Temperature	235°C +0°C / -5°C	260°C +0°C / -5°C
Time (tP) within 5°C of 260°C	20 seconds	30 seconds
Ramp-down Rate (TP to TL)	6°C/second max	6°C/second max
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.

Time 25°C to Peak -

DISCLAIMER

- LIGHTNING is continually improving the quality, reliability, function and design. LIGHTNING
 reserves the right to make changes without further notices.
- The characteristic curves shown in this datasheet are representing typical performance which are not guaranteed.
- LIGHTNING makes no warranty, representation or guarantee regarding the suitability of the
 products for any particular purpose or the continuing production of any product. To the maximum
 extent permitted by applicable law, LIGHTNING disclaims (a) any and all liability arising out of the
 application or use of any product, (b) any and all liability, including without limitation special,
 consequential or incidental damages, and (c) any and all implied warranties, including warranties of
 fitness for particular
- The products shown in this publication are designed for the general use in electronic applications such as office automation, equipment, communications devices, audio/visual equipment, electrical application and instrumentation purpose, non-infringement and merchantability.
- This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or lifesaving applications or any other application which can result in human injury or death.
- Please contact LIGHTNING sales agent for special application request.
- Immerge unit's body in solder paste is not recommended.
- Parameters provided in datasheets may vary in different applications and performance may vary
 over time. All operating parameters, including typical parameters, must be validated in each
 customer application by the customer's technical experts. Product specifications do not expand or
 otherwise modify LIGHTNING's terms and conditions of purchase, including but not limited to the
 warranty expressed therein.
- Discoloration might be occurred on the package surface after soldering, reflow or long-time use. It neither impacts the performance nor reliability.

Document No:Preliminary Rev: 0.1 Release Date: 2018/11/7