

DIP6, DC Input, Random-Phase Photo TRIAC Coupler

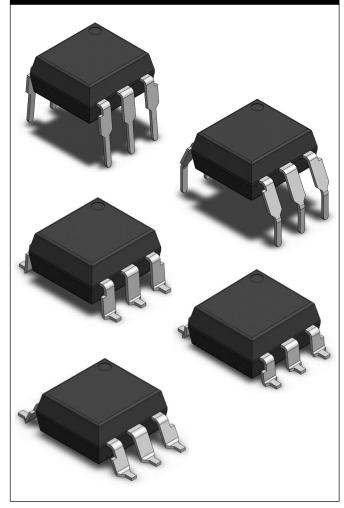
Description

The TD301X, TD302X and TD305X series combine an AlGaAs infrared emitting diode as the emitter which is optically coupled to a monolithic silicon random-phase photo triac in a plastic DIP6 package with different lead forming options. With the robust coplanar double mold structure, TD301X, TD302X and TD305X series provide the most stable isolation feature.

Features

- High isolation 5000 VRMS
- DC input with random-phase photo triac output
- Operating temperature range 40 °C to 100 °C
- REACH & RoHS compliance
- MSL class 1
- Regulatory Approvals
 - UL UL1577
 - VDE EN60747-5-5(VDE0884-5)
 - CQC GB4943.1, GB8898
 - cUL- CSA Component Acceptance
 Service Notice No. 5A

Applications


- Solenoid/valve controls
- Lighting controls
- Motor controls
- Temperature controls
- Static AC power switches
- Solid state relays
- Interfacing microprocessors to 115 to 240VAC peripherals

SCHEMATIC 6

PIN DEFINITION

- 1. Anode
- 4. Terminal
- 2. Cathode
- 5. Substrate
- 3. NC
- 6. Terminal

PACKAGE OUTLINE

TD301X,TD302X,TD305X Series

DIP6, DC Input, Random-Phase Photo TRIAC Coupler

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	VALUE	UNIT	NOTE		
INPUT						
Forward Current		I _F	60	mA		
Reverse Voltage		V_{R}	6	V		
Junction Temperature		Tj	125	°C		
Input Power Dissipation	Input Power Dissipation		100	mW		
OUTPUT						
	TD301X	V _{DRM}	250	V		
Off-state Output Terminal Voltage	TD302X		400			
	TD305X		600			
Peak Repetitive Surge Cur	Peak Repetitive Surge Current		1	Α		
PW=100µs, 120pps		l _{TSM}				
On-State RMS Current		I _{T(RMS)}	100	mA		
Junction Temperature		Tj	125	°C		
Output Power Dissipation		Po	300	mW		
	COMMON					
Total Power Dissipation		Ptot	400	mW		
Isolation Voltage		Viso	5000	Vrms	1	
Operating Temperature		Topr	-40~100	°C		
Storage Temperature		Tstg	-55~125	°C		
Soldering Temperature		Tsol	260	°C	2	

Note 1. AC For 1 Minute, R.H. = $40 \sim 60\%$

Note 2. For 10 seconds

TD301X,TD302X,TD305X Series

DIP6, DC Input, Random-Phase Photo TRIAC Coupler

ELECTRICAL OPTICAL CHARACTERISTICS at Ta=25°C								
	PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE
	INPUT							
	Forward Voltage	V _F	-	1.24	1.4	V	I _F =10mA	
	Reverse Current	I _R	-	-	10	μA	V _R =6V	
	Input Capacitance	Cin	-	8.5	250	pF	V=0, f=1kHz	
OUTPUT								
Pe	eak Off-state Current,				100	nA	V _{DRM} =Rated V _{DRM}	3
	Either Direction	I _{DRM}	-	-	100	ΠA	I _F =0	
Peak On-state Current,		V _{TM}	1.50	1.58	1.58 2.5	V	I _{TM} =100mA	
	Either Direction	VIM	_	1.56	2.5	V	IIM- IOOIIIA	
Critical Rate of Rise of Off-state		dV/dt 1	1000			V/µs	V _{PEAK} =Rated V _{DRM}	4
	Voltage	uv/ut	1000	-	-	V/μS	VPEAK -Raied VDRM	4
TRANSFER CHARACTERISTICS								
LED	TD3010,TD3021,TD3051		-	-	15		Terminal Voltage = 3V	
Trigger	TD3011,TD3022,TD3052	I _{FT}	-	-	10	mA	I _{TM} =100mA	
Current	TD3012,TD3023,TD3053		-	-	5			
Holding Current		I _H	-	257	-	μA		
Isolation Resistance		Riso	10^12	10^14	-	Ω	DC500V, 40 ~ 60% R.H.	
Floating Capacitance		C _{IO}	-	0.8	-	pF	V=0, f=1MHz	

Note3. Test voltage must be applied within dV/dt rating.

Note4. Refer to Fig.15 & Fig.16

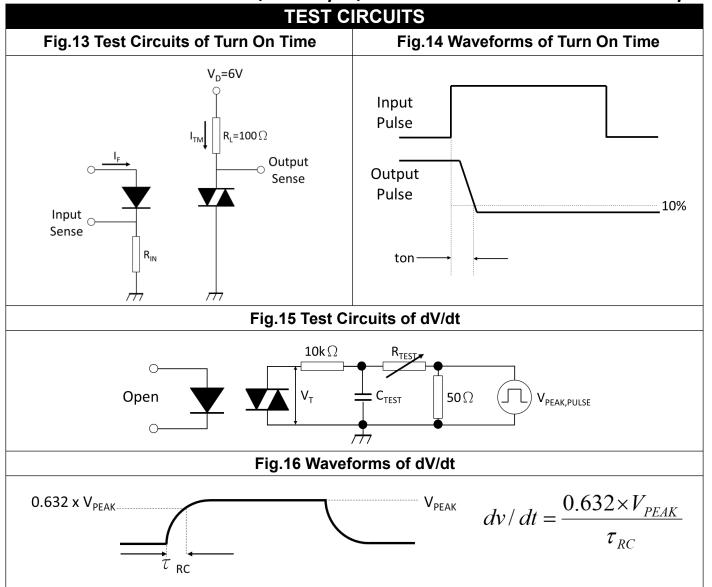
DIP6, DC Input, Random-Phase Photo TRIAC Coupler

CHARACTERISTIC CURVES Fig.1 Forward Current Fig.2 On-state Terminal Current vs. Ambient Temperature vs. Ambient Temperature 100 80 I_™ (mA) I_E (mA) 20 20 T_A (°C) T_A (°C) Fig.3 Forward Current Fig.4 Off-state Terminal Current vs. Forward Voltage vs. Ambient Temperature 100 1000 100 I_E (mA) I_{DRM} (nA) 25°C 0°C 40°C =600V =250V VDRM=400V 1.5 1.6 1.3 T_{A} (°C) Fig.5 Normalized Off-state Terminal Voltage **Fig.6 Normalized Trigger Current** vs. Ambient Temperature vs. LED Trigger Pulse Width Normalized to I_{st}=1000μs T_A=25°C 1.1 Normalized V_{DRM} Normalized I_{FT} Normalized to T₄=25°C _=0.1mA 0.6 L -40 -20 0 100 1000 PW (µs) T_A (°C)

Document No: Preliminary

DIP6, DC Input, Random-Phase Photo TRIAC Coupler

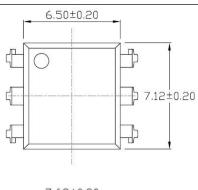
Release Date: 2021/6/21

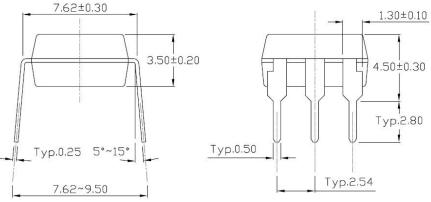

CHARACTERISTIC CURVES Fig.7 Normalized Trigger Current Fig.8 On-state Terminal Voltage vs. Ambient Temperature vs. Ambient Temperature 2.0 Normalized to T_a=25°C 1.8 Normalized I_{FT}) 1.6 N 0.2 0.0 <u></u> -40 T_{Δ} (°C) TA(°C) Fig.9 On-state Terminal Voltage Fig.10 Holding Current vs. On-state Terminal Current vs. Ambient Temperature 500 14 400 1.2 300 € 0.8 (FT) _± 200) ≥ 0.6 0.4 100 T_A=25°C I_{TM} (mA) T_A (°C) Fig.12 Turn On Time Fig.11 Turn On Time vs. Forward Current vs. Ambient Temperature $V_D=6V$ $R_L=100\Omega$ $I_F=15mA$ V_=6V 16 R =100Ω T_=25°C 14 ton (µs) ton (µs) 25 -20 100 $I_{F}(mA)$ T_A (°C)

Rev: A01

TD301X,TD302X,TD305X Series

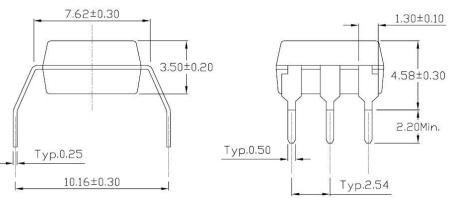
DIP6, DC Input, Random-Phase Photo TRIAC Coupler



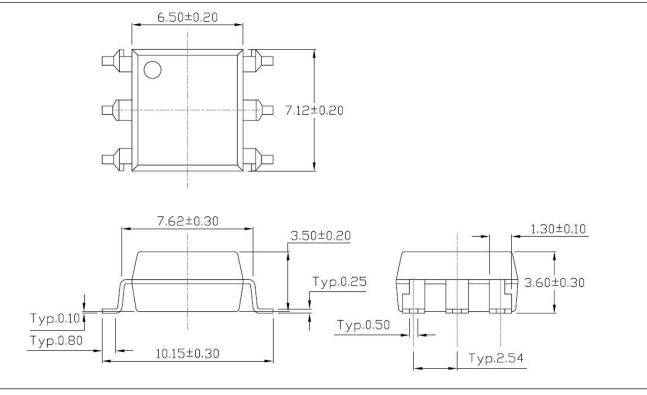

TD301X,TD302X,TD305X Series

DIP6, DC Input, Random-Phase Photo TRIAC Coupler

PACKAGE DIMENSIONS (Dimensions in mm unless otherwise stated)


Standard DIP - Through Hole (DIP Type)

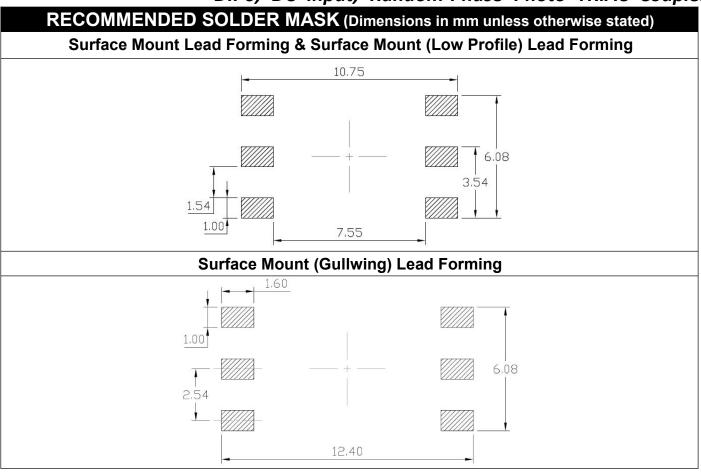
Gullwing (400mil) Lead Forming – Through Hole (M Type)



TD301X,TD302X,TD305X Series

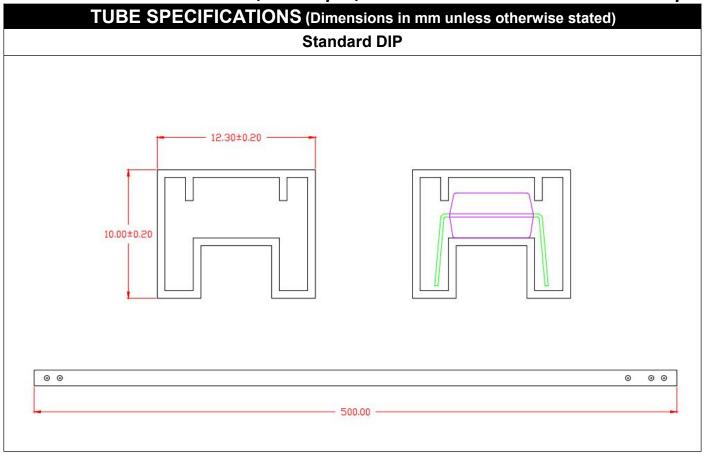
DIP6, DC Input, Random-Phase Photo TRIAC Coupler PACKAGE DIMENSIONS (Dimensions in mm unless otherwise stated) **Surface Mount Lead Forming (S Type)** 6.50±0.20 7.12±0.20 7.62±0.30 1.30±0.10 3.50±0.20 Typ.0.25 4.30±0.30 Typ.0.80 Typ.0.50 Typ.0.80 10.15±0.30 Typ.2.54

Surface Mount (Low Profile) Lead Forming (SL Type)

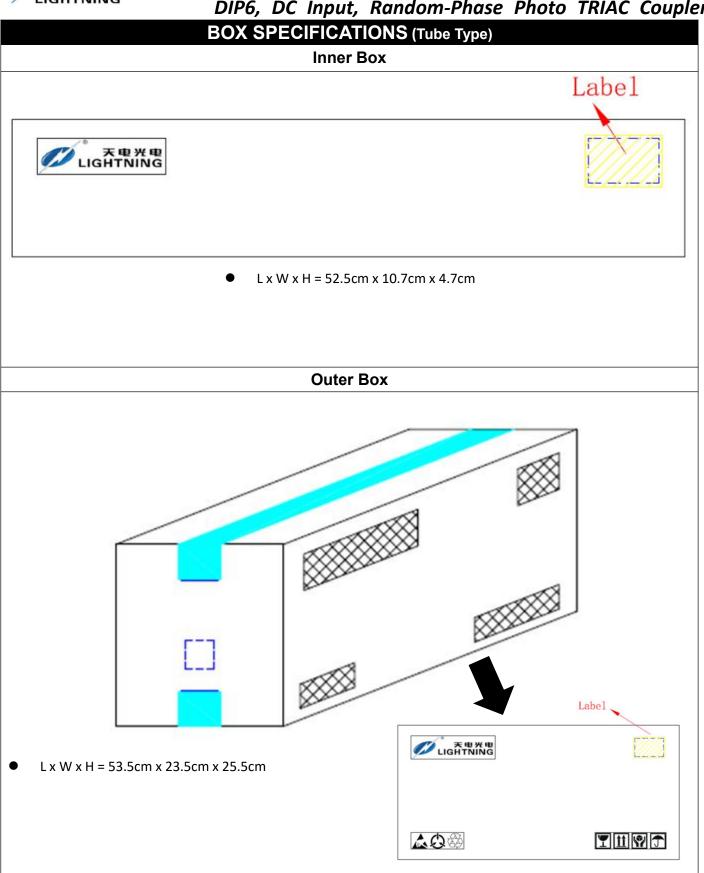


Document No: Preliminary Release Date: 2021/6/21 Rev: A01

TD301X,TD302X,TD305X Series


DIP6, DC Input, Random-Phase Photo TRIAC Coupler

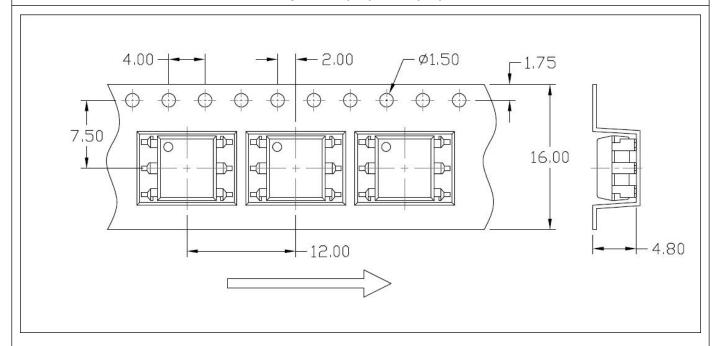
TD301X,TD302X,TD305X Series


DIP6, DC Input, Random-Phase Photo TRIAC Coupler

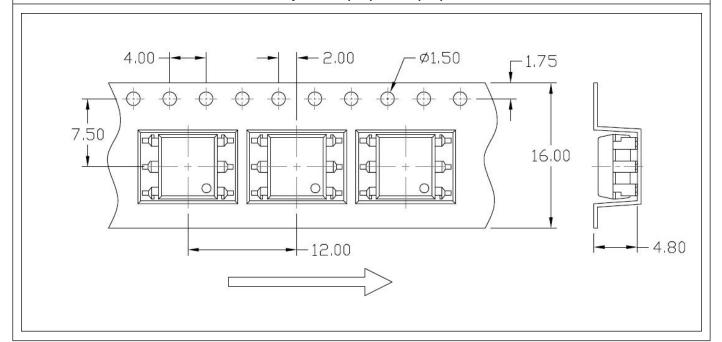
TD301X,TD302X,TD305X Series

DIP6, DC Input, Random-Phase Photo TRIAC Coupler

Document No: Preliminary Release Date: 2021/6/21 Rev: A01



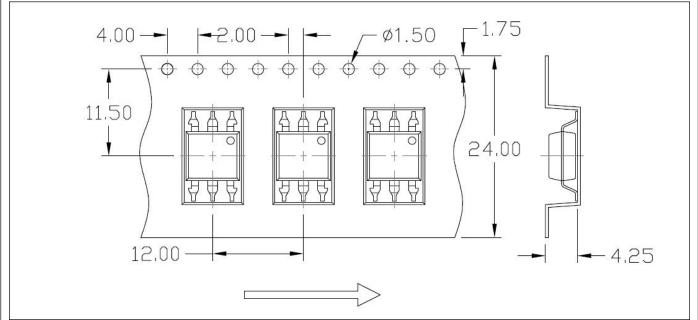
TD301X,TD302X,TD305X Series

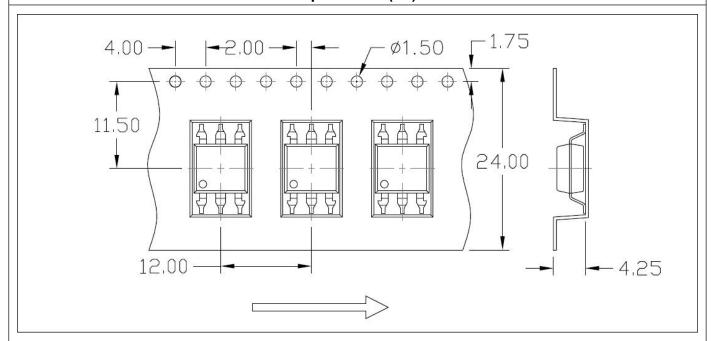

DIP6, DC Input, Random-Phase Photo TRIAC Coupler

CARRIER TAPE SPECIFICATIONS (Dimensions in mm unless otherwise stated)

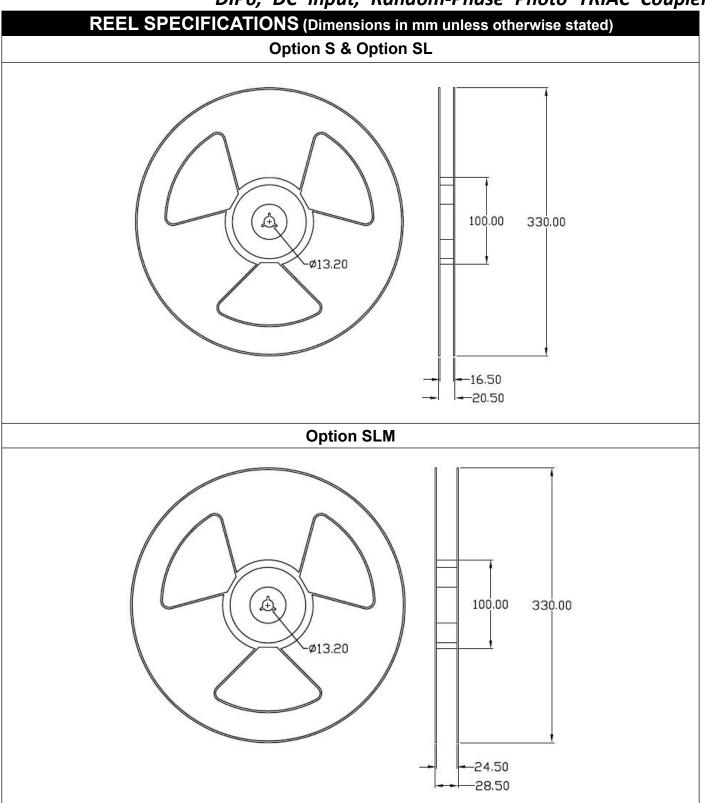
Option S(T1) & SL(T1)

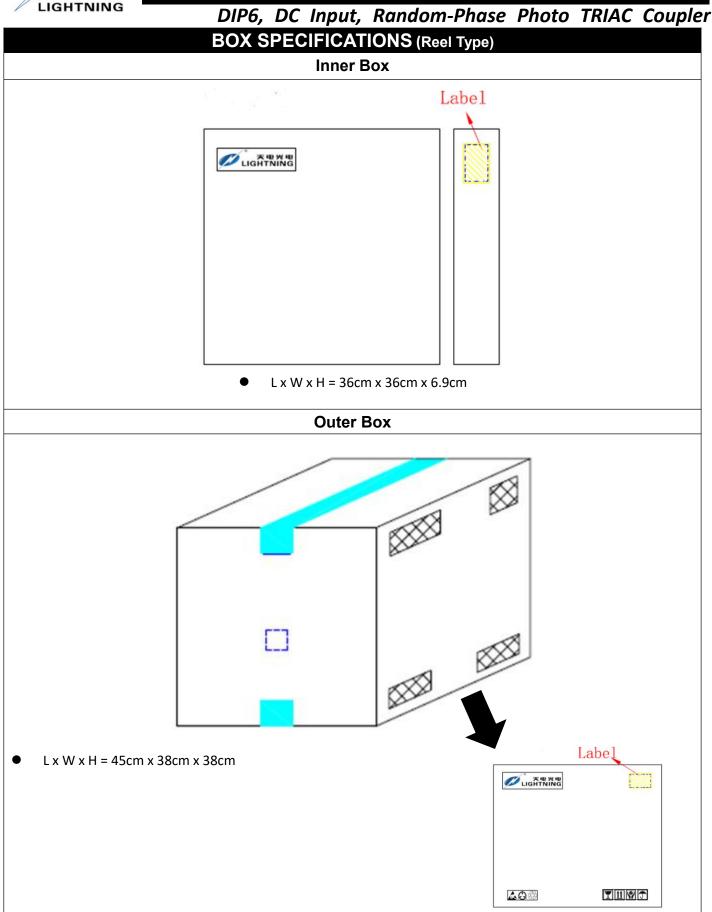
Option S(T2) & SL(T2)




TD301X,TD302X,TD305X Series

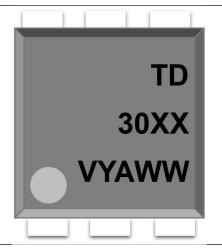
DIP6, DC Input, Random-Phase Photo TRIAC Coupler


Option SLM(T2)


TD301X,TD302X,TD305X Series

DIP6, DC Input, Random-Phase Photo TRIAC Coupler

TD301X,TD302X,TD305X Series


Release Date: 2021/6/21 Document No: Preliminary Rev: A01

TD301X,TD302X,TD305X Series

DIP6, DC Input, Random-Phase Photo TRIAC Coupler

ORDERING AND MARKING INFORMATION

MARKING INFORMATION

TD : Company Abbr.

30XX : Part Number & Rank

V : VDE Option Y : Fiscal Year

A : Manufacturing Code

WW : Work Week

ORDERING INFORMATION

TD30XX(Y)(Z)-GV

TD - Company Abbr.

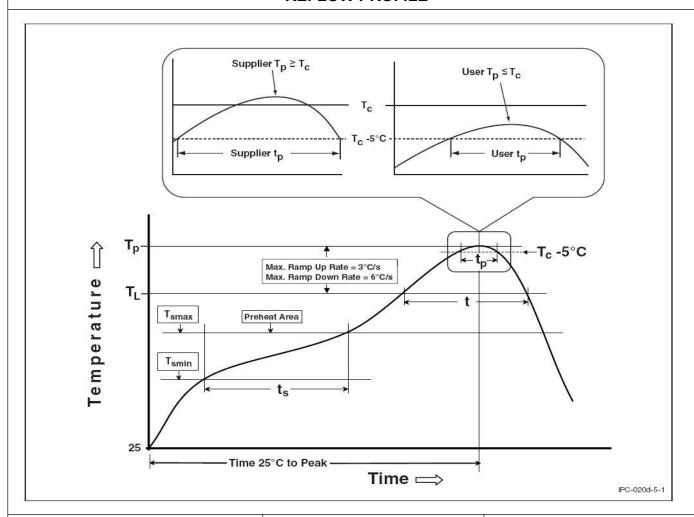
30XX - Part Number

(10/11/12/21/22/23/51/52/53)

- Y Lead Form Option (M/S/SL/None)
- Z Tape and Reel Option (T1/T2)
- G Green Option (G or None)
- V VDE Option (V or None)

LABEL INFORMATION

Packing Quantity


- Golding Galling					
Option	Quantity	Quantity – Inner box	Quantity – Outer box		
None	50 Units/Tube	32 Tubes/Inner box	10 Inner box/Outer box = 16k Units		
М	50 Units/Tube	32Tubes/Inner box	10 Inner box/Outer box = 16k Units		
S(T1)	1000 Units/Reel	3 Reels/Inner box	5 Inner box/Outer box = 15k Units		
S(T2)	1000 Units/Reel	3 Reels/Inner box	5 Inner box/Outer box = 15k Units		
SL(T1)	1000 Units/Reel	3 Reels/Inner box	5 Inner box/Outer box = 15k Units		
SL(T2)	1000 Units/Reel	3 Reels/Inner box	5 Inner box/Outer box = 15k Units		

TD301X,TD302X,TD305X Series

DIP6, DC Input, Random-Phase Photo TRIAC Coupler

REFLOW INFORMATION

REFLOW PROFILE

Profile Feature	Sn-Pb Assembly Profile	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	100	150°C
Temperature Max. (Tsmax)	150	200°C
Time (ts) from (Tsmin to Tsmax)	60-120 seconds	60-120 seconds
Ramp-up Rate (tL to tP)	3°C/second max.	3°C/second max.
Liquidous Temperature (TL)	183°C	217°C
Time (tL) Maintained Above (TL)	60 – 150 seconds	60 – 150 seconds
Peak Body Package Temperature	235°C +0°C / -5°C	260°C +0°C / -5°C
Time (tP) within 5°C of 260°C	20 seconds	30 seconds
Ramp-down Rate (TP to TL)	6°C/second max	6°C/second max
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.

TD301X,TD302X,TD305X Series

DIP6, DC Input, Random-Phase Photo TRIAC Coupler

DISCLAIMER

- LIGHTNING is continually improving the quality, reliability, function and design. LIGHTNING reserves the right to make changes without further notices.
- The characteristic curves shown in this datasheet are representing typical performance which are not guaranteed.
- LIGHTNING makes no warranty, representation or guarantee regarding the suitability of the products
 for any particular purpose or the continuing production of any product. To the maximum extent
 permitted by applicable law, LIGHTNING disclaims (a) any and all liability arising out of the
 application or use of any product, (b) any and all liability, including without limitation special,
 consequential or incidental damages, and (c) any and all implied warranties, including warranties of
 fitness for particular
- The products shown in this publication are designed for the general use in electronic applications such as office automation, equipment, communications devices, audio/visual equipment, electrical application and instrumentation purpose, non-infringement and merchantability.
- This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or lifesaving applications or any other application which can result in human injury or death.
- Please contact LIGHTNING sales agent for special application request.
- Immerge unit's body in solder paste is not recommended.
- Parameters provided in datasheets may vary in different applications and performance may vary
 over time. All operating parameters, including typical parameters, must be validated in each
 customer application by the customer's technical experts. Product specifications do not expand or
 otherwise modify LIGHTNING's terms and conditions of purchase, including but not limited to the
 warranty expressed therein.
- Discoloration might be occurred on the package surface after soldering, reflow or long-time use. It neither impacts the performance nor reliability.