

#### 3-Channel Constant Current Driver

### **Product Description**

The SCT2001 is designed to drive multiple LEDs in series from a high input voltage rail. The SCT2001 contains three output channels which are regulated to sink constant current for driving LEDs of large range VF variations.

In the field of LEDs driving applications, users can simply adjust the output current from 10 mA to 45 mA through an external resistor RADJ to control the light intensity of LEDs. The SCT2001 guarantees to endure maximum DC 24V at each output port.

### **Features**

- Three constant-current outputs rate at 24V
- Constant current range:10 45mA
- Wide operating operation by adding resistor from high rail to supply input
- ±2%(typ) current matching between outputs
- ±4%(typ) current matching between ICs
- Smart dimming control via ADJ pin
- Low drop-out output 0.3V@20mA
- Excellent current regulation to load, supply voltage and temperature
- All output current are adjusted through one external resistor
- Hysteresis input for ADJ external resistor
- Built-in power on reset and thermal protection function
- Package: Small 2mmx2mm DFN and SOT-236
- Applications: Mini light bar, LED backlight, LED lamp

#### **Pin Configurations**

| $ \begin{array}{c} \text{ADJ} & \square & 1 \\ \text{GND} & \square & 2 \\ \text{VDD} & \square & 3 \end{array} $ | 6 ⊐ OUT0 | VDD ☐ 1 ● | 6 □ OUT2 |
|-------------------------------------------------------------------------------------------------------------------|----------|-----------|----------|
|                                                                                                                   | 5 ⊐ OUT1 | ADJ ☐ 2   | 5 □ OUT1 |
|                                                                                                                   | 4 ⊐ OUT2 | OUT0 ☐ 3  | 4 □ GND  |
| SOT-2                                                                                                             | 236      | DFN       | 16       |

## **Terminal Description**

#### For SOT-236/DFN6

| Pin     | Pin No. |            | Eurotion                                         |
|---------|---------|------------|--------------------------------------------------|
| SOT-236 | DFN6    | Fininalite | T unction                                        |
| 1       | 2       | ADJ        | Input terminal used to set up all output current |
| 2       | 4       | GND        | Ground terminal                                  |
| 3       | 1       | VDD        | Supply voltage terminal                          |
| 4       | 6       | OUT2       | Output terminal 2                                |
| 5       | 5       | OUT1       | Output terminal 1                                |
| 6       | 3       | OUT0       | Output terminal 0                                |

### **Ordering information**

| Part        | Marking | Package       | Unit per reel(pcs) |
|-------------|---------|---------------|--------------------|
| SCT2001AS1G | 2001    | Green SOT-236 | 3000               |
| SCT2001ADNG | 01A     | Green DFN6    | 3000               |

#### StarChips Technology, Inc.

4F, No.5, Technology Rd., Science-Based Industrial Park, Hsin-Chu, Taiwan, R.O.C.

Tel : +886-3-577-5767 Ext.555

Fax: +886-3-577-6575

E-mail : service@starchips.com.tw

### **Block Diagram**



**SCT2001** 

## **Maximum Ratings** (T<sub>A</sub> = 25°C)

| Characteristic              | Symbol           | Rating               | Unit                     |       |  |
|-----------------------------|------------------|----------------------|--------------------------|-------|--|
| Supply voltage(DC)          |                  | V <sub>DD</sub>      | 17                       | V     |  |
| Input voltage               |                  | V <sub>ADJ</sub>     | $-0.4 \sim V_{DD} + 0.4$ | V     |  |
| Output current              |                  | I <sub>OUT</sub>     | 60                       | mA    |  |
| Output voltage              |                  | V <sub>OUT</sub>     | 24                       | V     |  |
| Total GND terminals current |                  | I <sub>GND</sub>     | 200                      | mA    |  |
| Power dissipation (on PCP)  | SOT-236          | Б                    | 0.64                     | 10/   |  |
| Power dissipation(on PCB)   | DFN6             | ГD                   | 2.16                     | vv    |  |
| Thormal resistance (on PCR) | SOT-236          | Б                    | 195                      |       |  |
| DFN6                        |                  | rt <sub>H(j-a)</sub> | 58                       | C / W |  |
| Operating temperature       |                  | T <sub>OPR</sub>     | -40~+85                  | °C    |  |
| Storage temperature         | T <sub>STG</sub> | -55~+150             | °C                       |       |  |

The absolute maximum ratings are a set of ratings not to be exceeded. Stresses beyond those listed under "Maximum Ratings" may cause the device breakdown, deterioration even permanent damage. Exposure to the maximum rating conditions for extended periods may affect device reliability.

### **Recommended Operating Conditions** (T<sub>A</sub>= -40 to 85°C unless otherwise noted)

| Characteristic      | Symbol           | Symbol Conditions      |    | Тур. | Max. | Unit |
|---------------------|------------------|------------------------|----|------|------|------|
| Supply voltage(DC)  | $V_{DD}$         | -                      | 5  | -    | 15   | V    |
|                     |                  | Output OFF             | -  | -    | 24   | V    |
| Output voltage      | V OUT            | Output ON              | -  | 1    | 4    | V    |
| Output current      | I <sub>OUT</sub> | DC test circuit        | 10 | -    | 45   | mA   |
| Dimming pulse width | tw               | V <sub>DD</sub> =5-15V | 2  | -    | -    | us   |
| Dimming rise time   | t <sub>R</sub>   | V <sub>DD</sub> =5-15V | -  | -    | 1    | us   |
| Dimming fall time   | t <sub>F</sub>   | V <sub>DD</sub> =5-15V | -  | -    | 1    | us   |

1. The output current keep constant in range of 10-45mA if  $V_{OUT}$ =1V.

However, user can minimize  $V_{OUT}$  to reduce power dissipation according to used current, e.g., set  $V_{OUT}$  to 0.3V if  $I_{OUT}$ =20mA. 2. The maximum  $V_{OUT}$  is package thermal limited, user should keep Vout under maximum power dissipation.

## **Electrical Characteristics** (V<sub>DD</sub>=5-15V, V<sub>ADJ</sub>=5V, R<sub>1</sub>=2K, T<sub>A</sub>=25°C unless otherwise specified)

| Characteristic                                                        | Symbol              | Conditions                                                                                      | Min. | Тур.  | Max. | Unit |
|-----------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------|------|-------|------|------|
| Supply current                                                        | I <sub>DD</sub>     | V <sub>DD</sub> =5/15V, R <sub>1</sub> =2K                                                      | -    | 1/1.5 | 2    | mA   |
|                                                                       | V <sub>IH</sub>     | -                                                                                               | 2.5  | -     | -    | V    |
| ADJ IIIpul vollage                                                    | V <sub>IL</sub>     | -                                                                                               | -    | -     | 20   | mV   |
| ADJ input current                                                     | I <sub>ADJ</sub>    | V <sub>ADJ</sub> =5V, R <sub>ADJ</sub> =4.8K                                                    | -    | 1     | -    | mA   |
| Output leakage                                                        | I <sub>OL</sub>     | V <sub>ADJ</sub> =0V, V <sub>OUT</sub> =24V,                                                    | -    | -     | 0.5  | uA   |
| Output current                                                        | I <sub>OUT</sub>    | R <sub>ADJ</sub> =4.8K                                                                          | -    | 20    | -    | mA   |
| Current channel skew <sup>1</sup>                                     | dl <sub>OUT1</sub>  | V <sub>OUT</sub> =1V,R <sub>ADJ</sub> =4.8K                                                     | -    | ±2    | ±3   | %    |
| Current chip skew <sup>2</sup>                                        | dl <sub>OUT2</sub>  | V <sub>OUT</sub> =1V,R <sub>ADJ</sub> =4.8K                                                     | -    | ±4    | ±6   | %    |
| Line regulation <sup>3</sup><br>I <sub>OUT</sub> vs. V <sub>DD</sub>  | %/dV <sub>DD</sub>  | 5V < V <sub>DD</sub> < 15V, R <sub>1</sub> =2K<br>V <sub>OUT</sub> >1 V, R <sub>ADJ</sub> =4.8K | -    | -     | ±1   | %/V  |
| Load regulation <sup>4</sup><br>I <sub>OUT</sub> vs. V <sub>OUT</sub> | %/dV <sub>out</sub> | 1V < V <sub>OUT</sub> < 4V,<br>I <sub>OUT</sub> =20mA, R <sub>ADJ</sub> =4.8K                   | -    | -     | ±1   | %/V  |
| Thermal shutdown                                                      | T <sub>H</sub>      | lunction Temperature                                                                            | -    | 160   | -    | °C   |
|                                                                       | TL                  | Junction remperature                                                                            | -    | 110   | -    | °C   |

1. Channel skew=( $I_{OUT}$ - $I_{AVG}$ )/ $I_{AVG}$ , where  $I_{AVG}$ =( $I_{OUT(max)}$ +  $I_{OUT(min)}$ )/2

2. Chip skew=( $I_{AVG}$ - $I_{CEN}$ ) /  $I_{CEN}$ \*100(%), where  $I_{CEN}$  is the statistics distribution center of output currents.

3. Line regulation=[I<sub>OUT</sub>(V<sub>DD</sub>=15V)-I<sub>OUT</sub>(V<sub>DD</sub>=5V)] / {[I<sub>OUT</sub>(V<sub>DD</sub>=15V)+I<sub>OUT</sub>(V<sub>DD</sub>=5V)]/2} / (15V-5V)\*100(%/V)

4. Load regulation=[I<sub>OUT</sub>(V<sub>OUT</sub>=4V)-I<sub>OUT</sub>(V<sub>OUT</sub>=1V)] / {[I<sub>OUT</sub>(V<sub>OUT</sub>=4V)+I<sub>OUT</sub>(V<sub>OUT</sub>=1V)]/2} / (4V-1V)\*100(%/V)

## **Test Circuit for Electrical Characteristics**



\*Please add R1 during operation.

| Switching C | <b>haracteristics</b> ( $V_{DD}$ =5-15V, $R_1$ =2K, $T_A$ =25°C unless otherwise noted) |
|-------------|-----------------------------------------------------------------------------------------|
|-------------|-----------------------------------------------------------------------------------------|

| Characteris                            | tic                                  | Symbol           | Conditions                                            | Min. | Тур. | Max. | Unit |
|----------------------------------------|--------------------------------------|------------------|-------------------------------------------------------|------|------|------|------|
| Propagation delay time<br>("L" to "H") | $V_{ADJ} - V_{OUTn}$                 | t <sub>PLH</sub> | $V_{LED} = 5V$<br>$V_{IH} = 5V$                       | -    | 200  | 400  | ns   |
| Propagation delay time<br>("H" to "L") | V <sub>ADJ</sub> - V <sub>OUTn</sub> | t <sub>PHL</sub> | $V_{\rm ADJ}$ = 5V<br>R <sub>ADJ</sub> = 4.8KΩ        | -    | 200  | 400  | ns   |
| Pulse width                            | V <sub>ADJ</sub>                     | t <sub>w</sub>   | $R_1 = 2K\Omega$                                      | 2    | -    | -    | us   |
| Output rise time of $I_{\text{OUT}}$   |                                      | t <sub>or</sub>  | $C_1 = 1uF$<br>$R_1 = 1800$                           | -    | 200  | 400  | ns   |
| Output fall time of $I_{OUT}$          |                                      | t <sub>OF</sub>  | $C_L = 100\Omega$<br>$C_L = 10pF$<br>$C_{LED} = 47uF$ | -    | 200  | 400  | ns   |

# **Test Circuit for Switching Characteristics**



\*Please add R<sub>1</sub> during operation.

# **Timing Waveform**



#### **Adjusting Output Current**

The output current ( $I_{OUT}$ ) are set by one external resistor at pin ADJ. The relationship between  $I_{OUT}$ , resistance  $R_{ADJ}$  and reference voltage  $V_{ADJ}$  is shown as the following figure.  $V_{ADJ}$  connected to a stable reference voltage is suggested. Furthermore,  $I_{OUT}$  could be estimated by ~  $I_{OUT}(A) = 20*V_{ADJ} / (R_{ADJ} (\Omega) + 200)$  (chip skew < ±6%, 1V <  $V_{OUT}$  <4V).



### **Output Characteristics**

The current characteristic of output curve is flat. The output current can be kept constant regardless of the variations of LED forward voltage when  $V_{OUT} > V_{DO}$ (drop-out voltage). The relationship between  $I_{OUT}$  and  $V_{OUT}$  is shown below. The output voltage should be kept as low as possible to prevent the SCT2001 from being overheated.



#### **Power Dissipation**

The maximum power dissipation (P<sub>D(max)</sub>) of a semiconductor chip varies with different packages and ambient temperature. It's determined as  $P_{D(max)}=(T_{J(max)}-T_A)/R_{TH(j-a)}$  where  $T_{J(max)}$ : maximum chip junction temperature is usually considered as 150°C, T<sub>A</sub>: ambient temperature, R<sub>TH(i-a</sub>): thermal resistance. Since P=IV, for sinking larger I<sub>OUT</sub>, users had better add proper voltage reducers on outputs to reduce the heat generated from the SCT2001.



### **Limitation on Maximum Output Current**

The maximum output current vs. duty cycle is estimated by:

I<sub>OUT(max)</sub>=(((T<sub>J(max)</sub>-T<sub>A</sub>)/R<sub>TH(j-a)</sub>)-(V<sub>DD</sub>\*I<sub>DD</sub>))/V<sub>OUT</sub>/Duty/N Where T<sub>J(max)</sub>=150°C, N=3(all ON)



#### SCT2001 I<sub>OUT(max)</sub> vs. Duty

### Load Supply Voltage (VLED)

The SCT2001 can be operated very well when V<sub>OUT</sub> ranges from 1V to 4V. However, it is recommended to use the lowest possible supply voltage or set a voltage reducer to reduce the V<sub>OUT</sub> voltage, at the same time reduce the power dissipation of the SCT2001. Follow the diagram instructions shown below to lower down the output voltage. This can be done by adding additional resistor or zener diode, thus  $V_{OUT}=V_{LED}-V_{DROP}-V_{F}$ .



# **Over Temperature Shutdown**

The SCT2001 contains thermal shutdown scheme to prevent damage from over-heating. The internal thermal sensor turns off all outputs when the die temperature exceeds +160°C. The outputs are enabled again when the die temperature drops below +110°C. During the thermal shutdown process, the LEDs look blinking since it is turned OFF then ON periodically.

#### **Typical Application Circuits**

#### (1) Typical lighting application



The SCT2001 can operate with wide supply input range by shunting a resistor R<sub>1</sub> to setup reference current of internal shunt regulator. The shunt regulator like structure can diminish negative influence of power bouncing or impact of instantly hot plug to system power. The calculation of R<sub>1</sub> is approximately expressed by: R<sub>1</sub> ~ (V<sub>DD</sub>-5V)/I<sub>DD(max)</sub>(2mA), the R<sub>1</sub> at least 2K from supply input to the SCT2001 is required. For example, if V<sub>DD</sub>=24V, set R<sub>1</sub> ~ (24V-5V)/I<sub>DD(max)</sub>(2mA)=9.5K, a higher R<sub>1</sub> e.g. 10K is recommended; if V<sub>DD</sub>=12V, set R<sub>1</sub> ~ (12V-5V)/I<sub>DD(max)</sub>=3.5K; however, if V<sub>DD</sub>=5V, set R<sub>1</sub>=2K directly.

#### (2) Typical lighting application (Zener diode as reference voltage)



Since output current of SCT2001 is  $V_{ADJ}$  dependent, to have a constant output with the most economic solution is by using zener diode as reference voltage  $V_{ADJ}$ . An adaptive value of  $R_1 \sim (V_{DD}-V_Z)/I_L$  is needed, where  $I_L = I_Z + I_{DD} + I_{ADJ}$ . If  $I_Z \sim 1$ mA,  $V_Z = 5.6$ V is selected, and  $V_{DD}=12$ V,  $I_{OUT}=20$ mA is intended current, typically  $I_{ADJ} \sim I_{DD} \sim 1$ mA in this case ( $V_Z = 5.6$ V), thus  $R_1 \sim (12V-5.6V)/3$ mA = 2.1K, a lower  $R_1$  e.g. 2K is recommended.

### (3) Lighting with dimming control



#### **PCB Design Considerations**

Use the following general guide-line when designing printed circuit boards (PCB) :

#### **Decoupling Capacitor**

Place a decoupling capacitor  $C_1$  e.g. 1uF between VDD and GND pins of the SCT2001. Locate the capacitor as close to the SCT2001 as possible. The necessary capacitance depends on the LED load current and dimming frequency. Inadequate VDD decoupling can cause timing problems, and very noisy LED supplies can affect LED current regulation.



#### **Power and Ground**

Maximizing the width and minimizing the length of VDD and GND trace improves efficiency and ground bouncing by effect of reducing both power and ground parasitic resistance and inductance. An adaptive value of resistor  $R_1$  in power input of the SCT2001 in conjunction with decoupling capacitor shunting the IC is required. Separating and feeding the LED power from another stable supply terminal  $V_{LED}$ , furthermore adding a capacitor  $C_{LED}$  greater than 10uF beside the LED are recommended. Please adapt  $C_{LED}$  according to total system current consumption.

# **Package Dimension**





| Symbol | D                        | Dimension (mm) |          |           | Dimension (mi | I)   |
|--------|--------------------------|----------------|----------|-----------|---------------|------|
| Symbol | Min.                     | Nom.           | Max.     | Min.      | Nom.          | Max. |
| А      | -                        | -              | 1.45     | -         | -             | 57.1 |
| A1     | 0.00                     | -              | 0.15     | 0.0       | -             | 5.9  |
| A2     | 0.90                     | 1.15           | 1.30     | 35.4      | 45.3          | 51.2 |
| b      | 0.30                     | -              | 0.50     | 11.8      | -             | 19.7 |
| С      | 0.08                     | -              | 0.22     | 3.2       | -             | 8.7  |
| D      | 2.90 BSC                 |                |          | 114.2 BSC |               |      |
| E      |                          | 2.80 BSC       |          |           | 110.2 BSC     |      |
| E1     |                          | 1.60 BSC       |          |           | 63.0 BSC      |      |
| е      |                          | 0.95 BSC       | 37.4 BSC |           |               |      |
| e1     | 1.90 BSC                 |                |          | 74.8 BSC  |               |      |
| L      | 0.30 0.45 0.60 11.8 17.7 |                |          |           | 17.7          | 23.6 |
| L1     |                          | 0.60 REF       |          |           | 23.6 REF      |      |
| θ      | 0°                       | 4°             | 8°       | 0°        | 4°            | 8°   |

#### DFN6-2x2(check up-to-date version)



| Symbol | D    | Dimension (mm) |      |      | imension (mi | il)  |
|--------|------|----------------|------|------|--------------|------|
| Symbol | Min. | Nom.           | Max. | Min. | Nom.         | Max. |
| А      | 0.70 | 0.75           | 0.80 | 27.6 | 29.5         | 31.5 |
| A1     | 0.00 | 0.02           | 0.05 | 0.0  | 0.8          | 2.0  |
| A3     |      | 0.20 REF       |      |      | 7.9 REF      |      |
| b      | 0.20 | 0.30           | 0.40 | 7.9  | 11.8         | 15.7 |
| D      | 1.9  | 2.00           | 2.10 | 74.8 | 78.7         | 82.7 |
| D1     | 0.00 | 1.20           | 1.25 | 0.0  | 47.2         | 49.2 |
| E      | 1.9  | 2.00           | 2.10 | 74.8 | 78.7         | 82.7 |
| E2     | 0.00 | 0.60           | 0.65 | 0.0  | 23.6         | 25.6 |
| е      |      | 0.65 BSC       |      |      | 25.6 BSC     |      |
| e1     |      | 1.30 BSC       |      |      | 51.2 BSC     |      |
| L      |      | 0.40 REF       |      |      | 15.7 REF     |      |
| у      | -    | -              | 0.08 | -    | -            | 3.1  |

### Revision History (check up-to-date version)

| Data Sheet Version | Remark                                             |
|--------------------|----------------------------------------------------|
| V02_03             | Add R1 to VDD pin at testing & application circuit |

Information provided by StarChips Technology is believed to be accurate and reliable. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Starchips can not assume responsibility and any problem raising out of the use of the circuits. Starchips reserves the right to change product specification without prior notice.

#### StarChips Technology, Inc.

www.starchips.com.tw

4F, No.5, Technology Rd., Science-Based Industrial Park, Hsin-Chu, Taiwan, R.O.C. Tel: +886-3-577-5767 # 555