REFLECTOR COATING TYPE HIGH-PERFORMANCE LEDs

High Performance SMD Single-Color Top LEDs

Part Number: GH-RUHB31TK-WPJ

Package outlines

ATTENTION OBSERVEPRECAUTIONS

FOR HANDLING
ELECTROSTATIC
SENSITIVE DEVICES

ITEM	MATERIALS
Resin	Silicon
Lens color	Water transparent
Dice	AIGaInP
Emitted color	Red

NOTES:

1. All dimensions are in millimeters (inches);
2. Tolerances are $\pm 0.2 \mathrm{~mm}$ (0.008 inch) unless otherwise noted.

Rev :	Date	Drawn by :	Checked by :	Approved by :
A	$2015 / 08 / 07$			

REFLECTOR COATING TYPE HIGH-PERFORMANCE LEDs

Part Number: GH-RUHB31TK-WPJ

Absolute maximum ratings					$\left(T_{A}\right.$	$\left.5^{\circ} \mathrm{C}\right)$
Parameter		Symbol	Value			Unit
Forward current		If	50			mA
Reverse voltage		Vr	5			V
Power dissipation		Pd	145			mW
Operating temperature range		Top	$-40 \sim+80$			${ }^{\circ} \mathrm{C}$
Storage temperature range		Tstg	$-40 \sim+85$			${ }^{\circ} \mathrm{C}$
Peak pulsing current ($1 / 8$ duty $\mathrm{f}=1 \mathrm{kHz}$)		Ifp		125		mA
Electro-0ptical characteristics				$\left(T_{A}=25^{\circ} \mathrm{C}\right)$		
Parameter	Test Condition	Symbol	Value			Unit
			Min	Typ	Max	
Wavelength at peak emission	$\mathrm{If}=50 \mathrm{~mA}$	λ peak	--	654	--	nm
Spectral half bandwidth	$\mathrm{If}=50 \mathrm{~mA}$	$\triangle \lambda$	--	22	--	nm
Dominant wavelength	$\mathrm{If}=50 \mathrm{~mA}$	$\lambda \mathrm{dom}$	630	640	650	nm
Forward voltage	$\mathrm{If}=50 \mathrm{~mA}$	Vf	1.9	2.1	2.9	V
Luminous intensity	$\mathrm{If}=50 \mathrm{~mA}$	Iv	100	170	320	mcd
Viewing angle at 50\% Iv	$\mathrm{If}=10 \mathrm{~mA}$	2 (1/2	--	120	--	Deg
Reverse current	$\mathrm{V}=5 \mathrm{~V}$	Ir	--	--	10	$\mu \mathrm{A}$

REFLECTOR COATING TYPE HIGH-PERFORMANCE LEDs

Part Number: GH-RUHB31TK-WPJ

OPTICAL CHARACTERISTIC CURVES

Relative Intensity vs. Wavelength

Forward Current vs. Forward Voltage

Directive Characteristics

REFLECTOR COATING TYPE HIGH-PERFORMANCE LEDs

Reflow Profile

■ Reflow Temp/Time

NOTES:

1. We recommend the reflow temperature $245^{\circ} \mathrm{C}\left(\pm 5^{\circ} \mathrm{C}\right)$.the maximum soldering temperature should be limited to $260^{\circ} \mathrm{C}$.
2. dont cause stress to the epoxy resin while it is exposed to high temperature.
3. Number of reflow process shall be 2 times or less.
-Soldering iron
Basic spec is $\leq 5 \sec$ when $260^{\circ} \mathrm{C}$. If temperature is higher, time should be shorter $\left(+10^{\circ} \mathrm{C} \rightarrow-1 \mathrm{sec}\right)$.Power dissipation of iron should be smaller than 20 W , and temperatures should be controllable . Surface temperature of the device should be under $230^{\circ} \mathrm{C}$.

- Rework

1. Customer must finish rework within 5 sec under $260^{\circ} \mathrm{C}$.
2. The head of iron can not touch copper foil
3. Twin-head type is preferred.

Avoid rubbing or scraping the resin by any object, during high temperature, for example reflow , solder etc.

REFLECTOR COATING TYPE HIGH-PERFORMANCE LEDs

Test circuit and handling precautions

■ Test circuit

- Handling precautions

1. Over-current-proof

Customer must apply resistors for protection; otherwise slight voltage shift will cause big current change (Burn out will happen).
2. Shelf life in sealed bag: 12 month at $5^{\circ} \mathrm{C} \sim 30^{\circ} \mathrm{C}$ and $<60 \%$ R.H;
3. After the package is Opened:
3.1. It is recommended to baking before the first use:

Baking condition:
a. $60 \pm 3^{\circ} \mathrm{C} \times(36 \sim 48 \mathrm{hrs})$ and $<5 \% \mathrm{RH}$, taped reel type ;
b. $110 \pm 3^{\circ} \mathrm{C} \times(8 \sim 16 \mathrm{hr})$, bulk type ;
3.2 The products should be used within a week or they should be keeping to stored at $\leqq 20$ R.H. with zip-lock sealed:
a. It is recommended to baking before soldering when the pack is unsealed after 72 hrs ;
b. Baking condition as 3.1 baking condition.

REFLECTOR COATING TYPE HIGH-PERFORMANCE LEDs

Test items and results of reliability

Type	Test Item	Test Conditions	Note	Number of Damaged
	Temperature Cycle	$\begin{array}{cc} -20^{\circ} \mathrm{C} & 30 \mathrm{~min} \\ \uparrow & \downarrow \\ 80^{\circ} \mathrm{C} & 30 \mathrm{~min} \\ \hline \end{array}$	100 cycle	0/22
	Thermal Shock	$\begin{array}{cl} -20^{\circ} \mathrm{C} & 15 \mathrm{~min} \\ \uparrow \uparrow \\ 80^{\circ} \mathrm{C} & 15 \mathrm{~min} \\ \hline \end{array}$	100 cycle	0/22
	High Humidity Heat Cycle	$30^{\circ} \mathrm{C} \Leftrightarrow 65^{\circ} \mathrm{C}$ 90\%RH 24hrs/1cycle	10 cycle	0/22
	High Temperature Storage	$\mathrm{T}_{\mathrm{a}}=80^{\circ} \mathrm{C}$	1000 hrs	0/22
	Humidity Heat Storage	$\begin{aligned} & \mathrm{T}_{\mathrm{a}}=60^{\circ} \mathrm{C} \\ & \mathrm{RH}=90 \% \end{aligned}$	1000 hrs	0/22
	Low Temperature Storage	$\mathrm{T}_{\mathrm{a}}=-30^{\circ} \mathrm{C}$	1000 hrs	0/22
	Life Test	$\begin{aligned} & \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \end{aligned}$	1000 hrs	0/22
	High Humidity Heat Life Test	$\begin{gathered} 60^{\circ} \mathrm{C} \quad \mathrm{RH}=90 \% \\ \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \end{gathered}$	500 hrs	0/22
	Low Temperature Life Test	$\begin{aligned} & \mathrm{T}_{\mathrm{a}}=-20^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \end{aligned}$	1000 hrs	0/22

PACKAGING SPECIFICATIONS

2031 Single-Color High Performance SMD Top LEDs Packaging Specifications

- Feeding Direction

- Dimensions of Tape (Unit: mm)

- Arrangement of Tape

NOTES

1. Empty component pockets are sealed with top cover tape;
2. The maximum number of missing lamps is two;
3. The cathode is oriented towards the tape sprocket hole;
4. 2,000(Max)pcs/Reel

PACKAGING SPECIFICATIONS

2031 Single-Color High Performance SMD Top LEDs Packaging Specifications

- Packaging specifications

NOTES:
Reeled products [numbers of products are 2,000(Max)pcs] packed in a seal off moisture-proof bag along with desiccant and Humidity card one by one, Seven moisture-proof bag of maximums [total maximum number of products are $14,000(\mathrm{Max}) \mathrm{pcs}$] packed in an inside box (size: about $238 \mathrm{~mm} x$ about $194 \mathrm{~mm} x$ about 102 mm) and four inside boxes of maximums are put in the outside box (size: about $410 \mathrm{~mm} x$ about 254 mm x about 229mm) Together with buffer material, and it is packed. (Part No., Lot No., quantity should appear on the label on the moisture-proof bag, part No. And quantity should appear on the label on the cardboard box.) The number of the loading steps of outside box (cardboard box) has it to three steps.

REFLECTOR COATING TYPE HIGH-PERFORMANCE LEDs

Part Number: GH-RUHB31TK-WPJ

Forward Voltage Rank Combination (IF=50mA)

Rank	Min.	Max.	Unit
\square	1.9	2.9	V
Luminous Intensity Rank Combination (IF=50mA)			

Rank	Min.	Max.	Unit
J	100	125	
K	125	160	
L	160	200	
M	200	250	
N	250	320	

Dominant wavelength Rank Combination ($\mathrm{F}=50 \mathrm{~mA}$)

Rank	Min.	Max.	Unit
v	630	635	nm
w	635	650	
Group Name on Label	(Example DATA: \square Lv 50)		

DATA: $\square \operatorname{Lv} 50$	Vf(V)	Iv (mcd)	$\lambda \mathrm{d}(\mathrm{nm})$	Test Condition
$\square \rightarrow L \rightarrow \mathrm{v} \rightarrow 50$	$1.9 \sim 2.9$	$160 \sim 200$	$630 \sim 635$	$\mathrm{IF}=50 \mathrm{~mA}$

* NOTE:

1. The tolerance of luminous intensity (Iv)is $\pm 15 \%$
2. The tolerance of dominant wavelength is $\pm 1 \mathrm{~nm}$.
3. This specification is preliminary.
