

PRODUCT DATASHEET

- ► PLCC2 SMD
- ➤ 2835 0.5W Series
- ► Red (625nm)

NOR15S51

2835 0.5W Series

APPLICATIONS:

- **Decorative Lighting**
- Backlighting
- Indicator
- Display

2835 0.5W Series

FEATURES:

- Package: PLCC2 Mid Power White SMT Package
- Forward Current: 150mA Forward Voltage (typ.): 2.4V
- Luminous Flux (typ.): 22lm @150mA
- Colour: Red
- Wavelength: 625nm Viewing angle: 120°
- **Materials:**
 - Die: AlGaInP
 - Resin: Silicon (Water Clear)
 - L/T Finish: Ag plated
- Operating Temperature: -40~+85°C Storage Temperature: -40~+100°C
- **Grouping parameters:**
 - Forward voltage
 - Luminous flux
 - **Dominant Wavelength**
- Soldering methods: IR Reflow
- Preconditioning: acc. to JEDEC Level 3
- Packing: 12mm tape with 2000/reel, ø180mm (7")

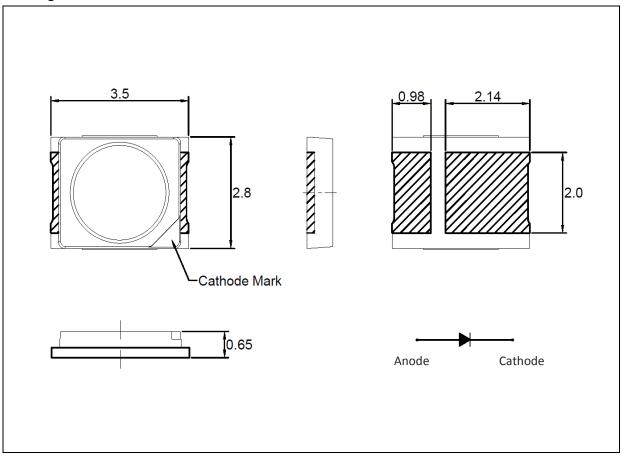
CHARACTERISTICS:

Absolute Maximum Characteristics (Ta=25°C)

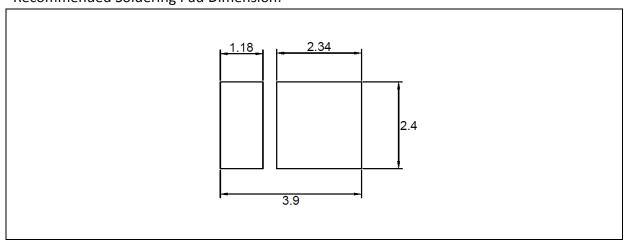
Parameter	Symbol	Ratings	Unit
Forward Current	I _F	150	mA
Peak Forward Current (Duty 1/10; width 10KHz)	I _{FP}	300	mA
Reverse Current @5V	I _R	10	μΑ
Power Dissipation	P _D	420	mW
Electrostatic Discharge	ESD	2000	V
Junction Temperature	Tj	115	°C
Operating Temperature	T _{OPR}	-40~+85	°C
Storage Temperature	T_{STG}	-40~+100	°C
Soldering Temperature	T _{SD}	260	°C

Electrical & Optical Characteristics (Ta=25°C)

Parameter Symbol		Values			Unit	Test
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Forward Voltage	V_{F}	1.7	2.4	2.8	V	I _F =150mA
Luminous Flux	Φ _V	18	22	26	lm	I _F =150mA
Dominant Wavelength	$\lambda_{\scriptscriptstyle D}$	620	625	630	nm	I _F =150mA
Spectral Half Width	Δλ		20		nm	I _F =150mA
Viewing Angle	2θ _{1/2}		120		deg	I _F =150mA


^{1.} Luminous intensity (I_V) ±15%, Forward Voltage (V_F) ±0.1V, Viewing angle(2 $\theta_{1/2}$) ±5%

^{2.} IS standard testing


OUTLINE DIMENSION:

Package Dimension:

- 1. All dimensions are in millimetre (mm).
- 2. Tolerance ±0.2mm, unless otherwise noted.

Recommended Soldering Pad Dimension:

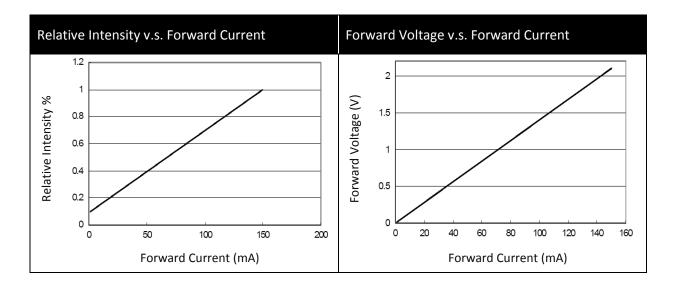
- 1. Dimensions are in millimetre (mm).
- 2. Tolerance ±0.1mm with angle tolerance ±0.5°.

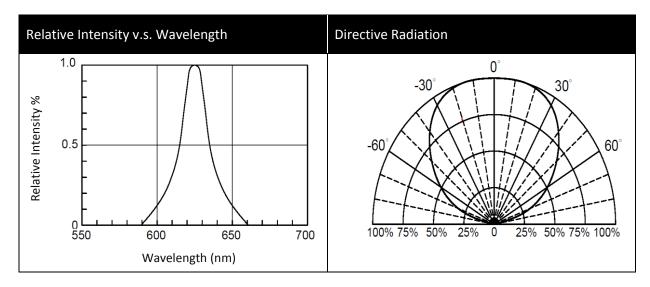
BINNING GROUPS:

Forward Voltage Classifications ($I_F = 150 \text{mA}$):

Code	Min.	Max.	Unit
В	1.7	1.8	
С	1.8	1.9	
D	1.9	2.0	
E	2.0	2.1	
F	2.1	2.2	
G	2.2	2.3	V
Н	2.3	2.4	
1	2.4	2.5	
J	2.5	2.6	
К	2.6	2.7	
L	2.7	2.8	

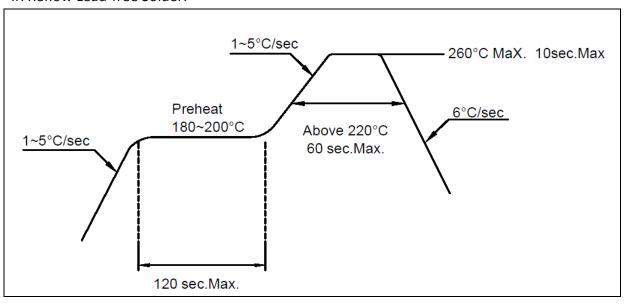
Luminous Flux Classifications ($I_F = 150$ mA):


Code	Min.	Max.	Unit
F18D	18	20	
F20D	20	22	lm
F22D	22	24	lm
F24D	24	26	


Dominant Wavelength Classifications ($I_F = 150 \text{mA}$):

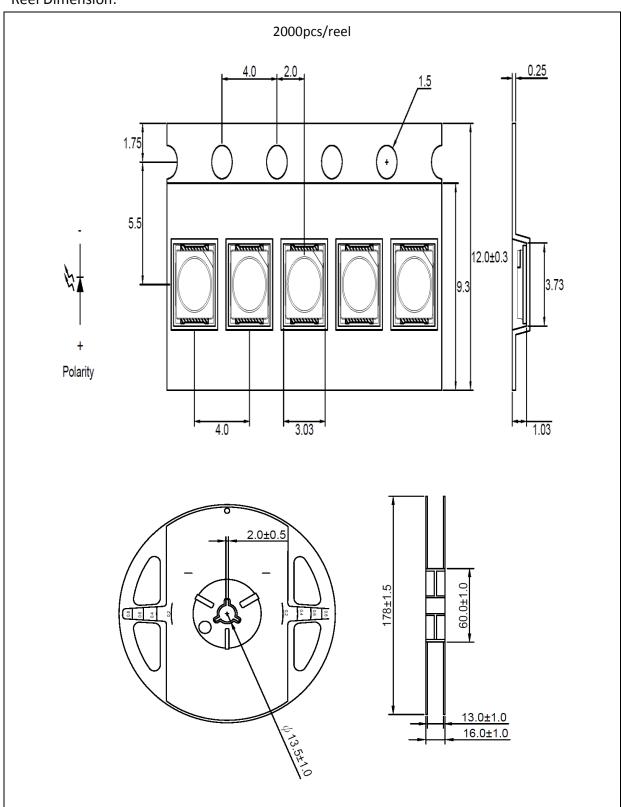
Code	Min.	Max.	Unit
D	620	625	2.22
E	625	630	nm

ELECTRO-OPTICAL CHARACTERISTICS:



RECOMMENDED SOLDERING PROFILE:

IR Reflow Lead-free Solder:


Note:

- 1. Maximum reflow soldering: 2 times.
- 2. Before, during, and after soldering, should not apply stress on the components and PCB board.
- 3. Recommended reflow temperature 240 $^{\circ}$ C. The maximum soldering temperature should be limited to 260 $^{\circ}$ C.

PACKING SPECIFICATION:

Reel Dimension:

PRECAUTIONS OF USE:

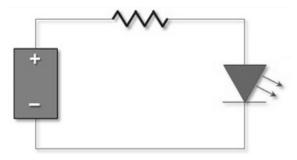
Storage:

It is recommended to store the products in the following conditions:

- Humidity: 60% R.H. Max.
- Temperature: 5°C~30°C (41°F ~86°F).

Shelf life in sealed bag: 12 month at 5°C~30°C and <60% R.H.

Once the package is opened, the products should be used within a week. Otherwise, they should be kept in a damp-proof box with descanting agent and apply baking at 60°C±5°C for 15hrs before use.


Baking:

It is recommended to bake the LED before soldering if the pack has been unsealed for longer than 24hrs. The suggested baking conditions are as followings:

- 70±3°C x 24hrs and <5%RH, taped / reel package.
- 100±3°C x 2hrs, bulk (loose) package.
- 130±3°C x 30min, bulk (loose) package.

It's normal to see slight color fading of carrier (light yellow) after baking in process.

Testing Circuit:

Must apply resistor(s) for protection (over current proof).

Cleaning:

Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LED carrier / package. Avoid putting any stress force directly on to the LED lens.

ESD (Electrostatic Discharge):

Static Electricity or power surge will damage the LED. Use of a conductive wrist band or anti-electrosatic glove is recommended when handing the LED all time. All devices, equipment, machinery, work tables, and storage racks must be properly grounded.

In the events of manual working in process, make sure the devices are well protected from ESD at any time.

REVISION RECORD:

Version	Date	Summary of Revision
A1.0	26/11/2014	Datasheet set-up.