

PRODUCT DATASHEET

- ► CHIP SMD with IC
- 0505 (1212) IC 0.75t
- ► Red/Green/Blue

N0M64S79IC

AUTOMOTIVE

APPLICATIONS:

- Telecommunication
- Status Indicator
- Home Appliance
- Decoration Lighting
- Full Colour LED Strip
- Gaming Device
- Guardrail Tube

1

Indoor Display Screen

0505 IC-Integrated compliant

- Package: CHIP 4-Pins EIA STD Package with Integrated IC
- Forward Current: 5/6/5mA*
- Forward Voltage (typ.): 7.0V
- Luminous Intensity (typ.): 420mcd mixed white
- **Colour:** Red/Green/Blue
- IC Feature:
 - ✓ Serial data frequency is 400-1600khz adjustable, using zero return code.
 - ✓ Built-in open/short circuit detection feedback function.
 - ✓ Low EMI design.
 - ✓ Built-in overvoltage protection.
 - ✓ Built-in low ash brightness compensation.
- **Pixel:** Supports 65,536 full gamma-ray resolution. RGB monochrome supports 16bit data. RGB current can be controlled separately. Maximum number of LED cascades can reach 1,000pcs.
- Soldering methods: IR Reflow soldering
- Preconditioning: acc. to JEDEC Level 3
- Packing: 8mm tape with max.4000pcs/reel, ø180mm (7")

* in order of Red/Green/Blue

CHARACTERISTICS:

Parameter Symbol Ratings Unit Forward Current IF 5/6/5 mΑ 7 IC Power Supply Voltage V_{DD} V IC Input Voltage V_{IN} -0.4~V_{DD} V Logic Output Voltage ٧ V_{OUT} -0.4~+5.5 °C Operating Temperature ¹ TOPR -40~+105 -40~+105 °C Storage Temperature $\mathsf{T}_{\mathsf{STG}}$ Soldering Temperature 260 °C T_{SD} Electrostatic discharge (HBM) ESD 4000 V

Absolute Maximum Characteristics (Ta=25°C)

1. The maximum soldering time is 10 seconds in T_{SD} .

Electrical & Optical Characteristics (Ta=25°C)

Deremeter	Symbol		Values	Linit	Test	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Standby Current @800KHz data input	I _{STB}	170		360	μΑ	V _{DD} =4.5V I _{out} =OFF
Input Voltage Level	V _{IH}	2.7			V	D _{IN} , Input High Level V
Input voitage Lever	V _{IL}			0.3	V	D _{IN} , Input Low Level V
R/G/B Current Output	I _{OUT}	1.2		15	mA	V _{DD} =5V
Static Power Consumption	I _{DD}			0.5	mA	No Signal
Working Current	I _{CC}			0.7	mA	800KHz Data Input

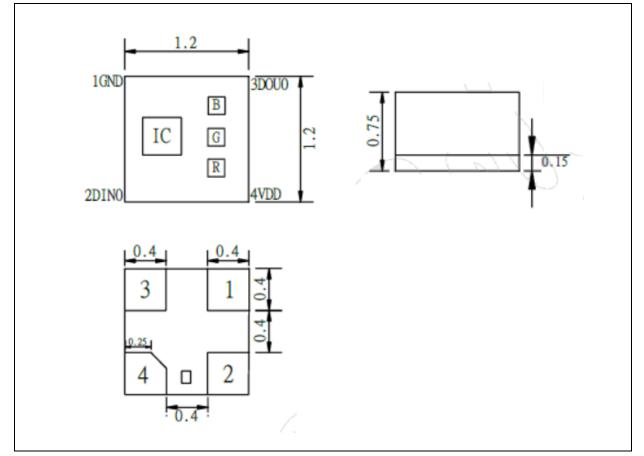
							– 1
Parameter		Symbol		Values	Unit	Test	
			Min.	Тур.	Max.		Condition
	R		63	107	160	mcd	I _F =5mA
	G		200	289	400		I _F =6mA
Luminous Intensity	В	l _V	30	52	80		I _F =5mA
	W		320	420	630		I _F =16mA
Dominant Wavelength	R	λ_{D}	615		630	nm	I _F =5mA
	G		515		535		I _F =6mA
	В		460		475		I _F =5mA
Colour Coordinate	Х			0.2637			I _F =16mA
	Y			0.2986			IE-TOUIN
Viewing Angle		20 _{1/2}		120		deg	I _F =16mA

Electrical & Optical Characteristics (Ta=25°C, V_{DD}=5V)

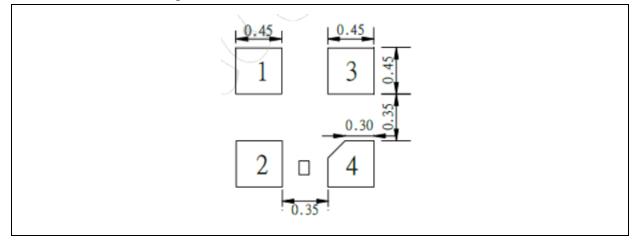
1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eyeresponse curve.

2. $2\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.

- 3. The dominant wavelength, λ_d is derived from CIE chromaticity diagram and represents the single wavelength which defines the colour of the device. Peak emission wavelength tolerance is ±1nm.
- 4. We will amend the Bin code to maintain Bin Code centralize and we get the Luminous Intensity is 1.3 double per Bins.

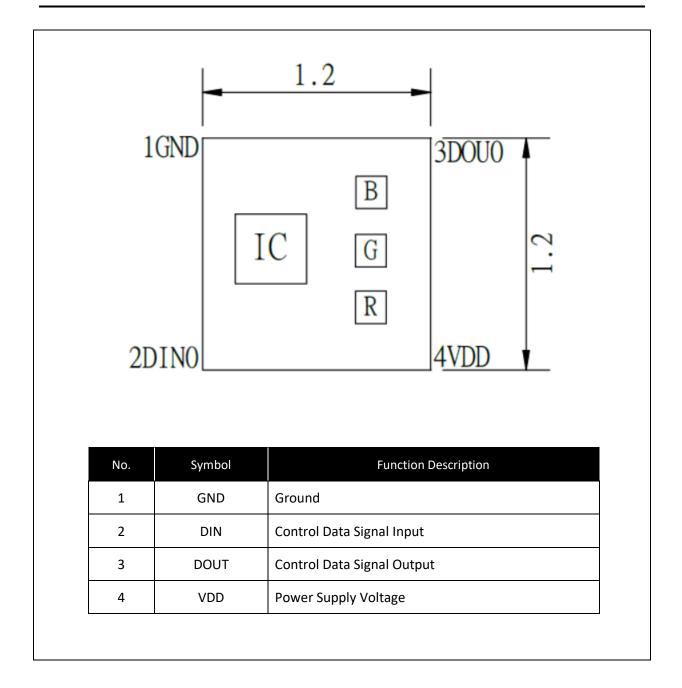

Switching Characteristics (Ta=25°C)

Parameter	Symbol		Values	Unit	Test	
Parameter		Min.	Тур.	Max.	Omt	Condition
Rate of Data Signal	F _{DIN}	400		1600	KHz	
The Output Frequency	F _{OUT}		12		KHz	R/G/B
Transmission Delay Time	т		300		ns	$\rm D_{\rm IN0} \rightarrow \rm D_{\rm O0}$
Transmission Delay Time	T _{pzl}		300		ns	$D_{\text{IN1}} \rightarrow D_{\text{O1}}$

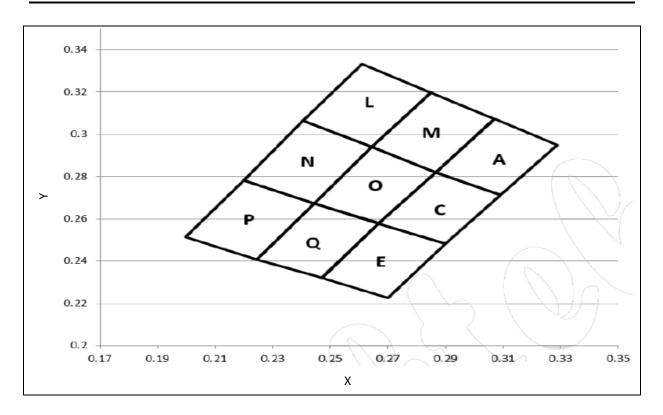

OUTLINE DIMENSION:

Package Dimension:

- 2. All dimensions are in millimetre (mm).
- 3. Tolerance ±0.1mm, unless otherwise noted.

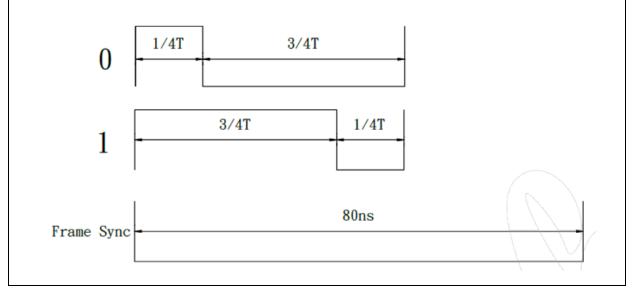

Recommended Soldering Pad Dimension:

- 1. Dimensions are in millimetre (mm).
- 2. Tolerance ± 0.1 mm with angle tolerance $\pm 0.5^{\circ}$.



PIN CONFIGURATION:

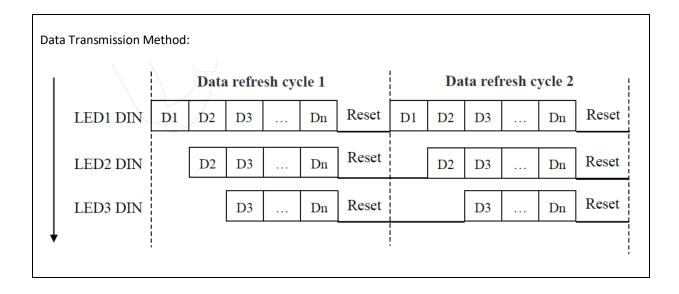
CIE CHROMATICITY DIAGRAM:


Chromaticity Coordinates Classifications:

	1		2		3		4	
	Х	Y	Х	Y	Х	Y	Х	Y
L	0.2406	0.3064	0.2609	0.3332	0.2849	0.3196	0.2643	0.2940
М	0.2643	0.2940	0.2849	0.3196	0.3068	0.3072	0.2865	0.2819
А	0.3070	0.3072	0.3287	0.2948	0.3091	0.2712	0.2865	0.2819
Р	0.2200	0.2783	0.1996	0.2513	0.2244	0.2407	0.2444	0.2672
Q	0.2444	0.2672	0.2244	0.2407	0.2471	0.2320	0.2669	0.2579
E	0.2667	0.2578	0.2899	0.2482	0.2700	0.2227	0.2470	0.2320
С	0.2865	0.2819	0.3091	0.2712	0.2899	0.2482	0.2667	0.2578
0	0.2444	0.2672	0.2643	0.2940	0.2865	0.2819	0.2667	0.2578
N	0.2200	0.2783	0.2406	0.3064	0.2643	0.2940	0.2444	0.2672

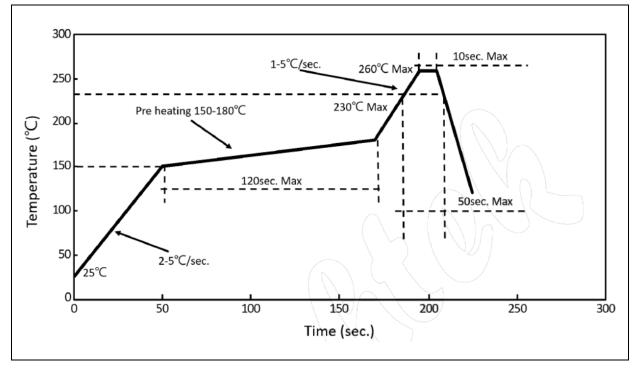
Function Description:

1. Timing Wave Form:


2. Data Transfer Time:

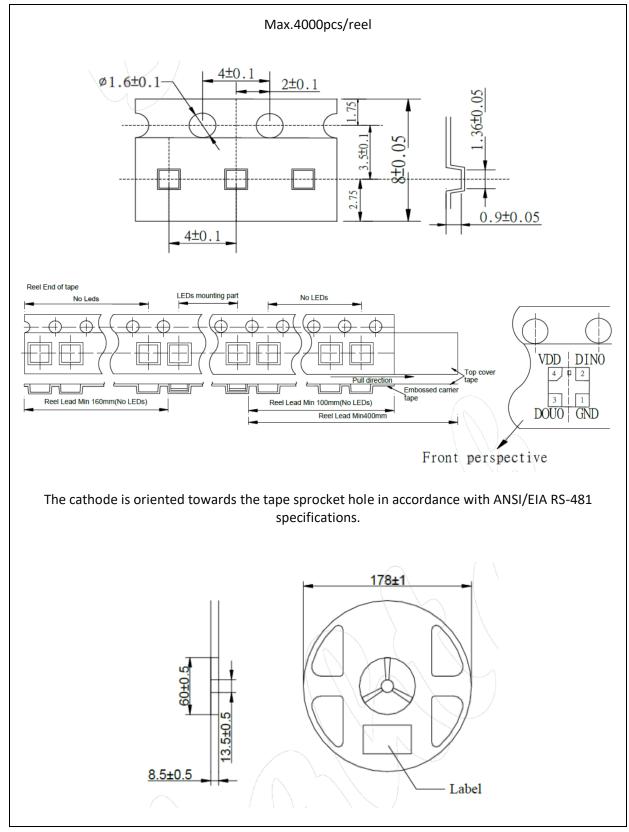
Item	Description	Typical	Allowance
-	Unit code frequency	400~1600KHZ	
Тон	0 code, high voltage time	1/4T	-
Τοι	0 code, low voltage time	3/4T	-
T1H	1 code, high voltage time	3/4T	-
T1L	1 code, low voltage time	1/4T	-
RES	reset time	100-1000µs	-

3. Composition of 16bit Data:


R1-16Bit	G1-16Bit	B1-16Bit	<u> </u>	RN-16Bit	GN-16Bit	BN-16Bit
can work i numerical s	normally, but specifications i an LED requir	the high-level t in the above tab	time of 0 code le.	y 1.6Mhz) and 2.5 and 1 code must signal stops trans	t conform to the	e corresponding

RECOMMENDED SOLDERING PROFILE:

Lead-free Solder IR Reflow:


Note:

- 1. We recommend the reflow temperature 240°C (±5°C). The maximum soldering temperature should be limited to 260°C.
- 2. Maxima reflow soldering: 3 times.
- 3. Before, during, and after soldering, should not apply stress on the components and PCB board.

PACKING SPECIFICATION:

Reel Dimension:

PRECAUTIONS OF USE:

Storage:

It is recommended to store the products in the following conditions:

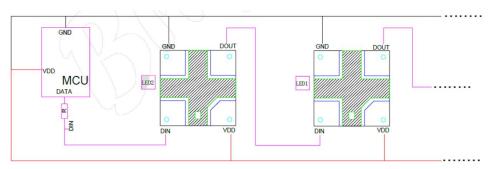
- Humidity: 60% R.H. Max.
- Temperature: 5°C~30°C (41°F ~86°F).

Shelf life in sealed bag: 12 months at 5°C~30°C and <60% R.H.

Once the package is opened, the products should be used within 72 hours. Otherwise, they should be kept in a damp-proof box with descanting agent stored at R.H.<10% and apply baking before use.

Over-Current Proof:

Must apply resistors for protection otherwise slight voltage shift will cause big current change and burnout will happen.


Baking:

It is recommended to bake the LED before soldering if the pack has been unsealed for longer than 24hrs. The suggested baking conditions are as followings:

60±3°C x 6hrs and <5%RH, taped / reel package.

It's normal to see slight color fading of carrier (light yellow) after baking in process.

Typical Application Circuit:

When the first LED is connected to the MCU, a resistance R is needed in series between its signal input line and the MCU. The size of R depends on the number of cascade beads. The more cascades, the smaller resistance R is used. It is generally recommended that the value be between 100-1K. Usually the recommended value is around 300 R. To make the LEDs work more stably, a parallel capacitor is needed between VDD and GND of each LED.

Cleaning:

Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LED carrier / package. Avoid putting any stress force directly on to the LED lens.

ESD (Electrostatic Discharge):

Static Electricity or power surge will damage the LED. Use of a conductive wrist band or anti-electrosatic glove is recommended when handing the LED all time. All devices, equipment, machinery, work tables, and storage racks must be properly grounded.

REVISION RECORD:

Version	Date	Summary of Revision
A1.0	20/05/2023	Datasheet set-up.