

Specification for Approval

Model Name:

Sı	upplier Approv	Customer approval	
R&D Designed	R&D Approved	QC Approved	
Peter	Peng Jun		

Revision Record

REV NO.	REV DATE	CONTENTS	Note
A	2019-06-26	NEW ISSUE	

Table of Contents

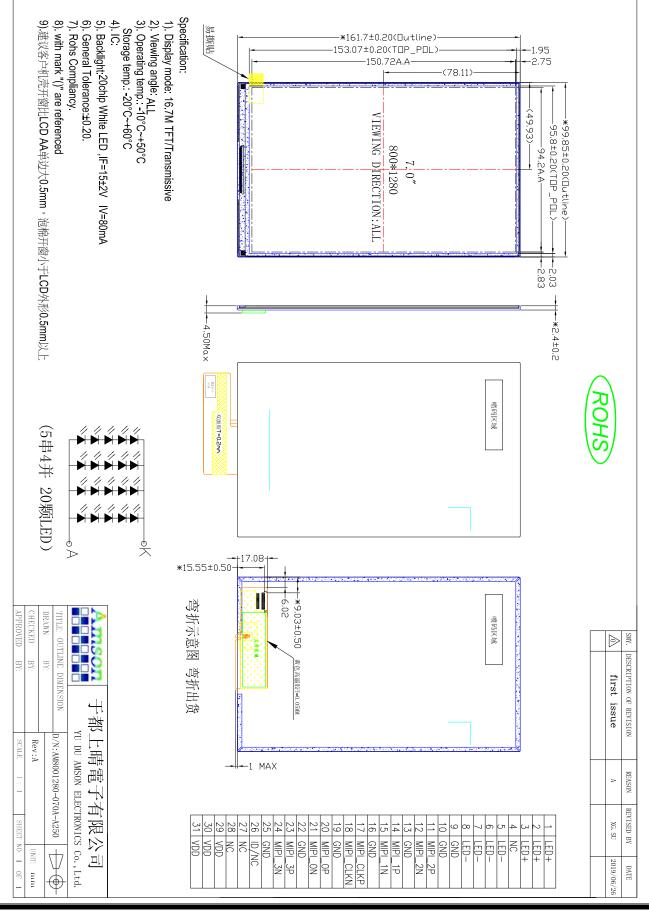
List	Description	Page No.		
	Cover	1		
	Revision Record	2		
	Table of Contents	3		
1	Scope	4		
2	General Information	4		
3	External Dimensions	5		
4	Interface Description	6		
5	Absolute Maximum Ratings	7		
6	DC Characteristics	7		
7	Timing Characteristics	8		
8	Backlight Characteristics	14		
9	Optical Characteristics	15		
10	Reliability Test Conditions and Methods	17		
11	Inspection Standard	18		
12	Handling Precautions	22		
13	Precaution for Use 23			
14	Packing Method	23		

1. Scope

This specification defines general provisions as well as inspection standards for TFT module supplied by AMSON electronics.

If the event of unforeseen problem or unspecified items may occur, naturally shall negotiate and agree to solution.

2. General Information


ITEM	STANDARD VALUES	UNITS
Panel Size	7.0"	inch
Number of Pixels	800×RGB (3) ×1280	pixels
Active Area	94.2(H)x 150.72(V)	mm
Pixel Pitch	0.03925(H)×0.11775(V)	mm
Outline Dimension	99.85(W)×161.7(H)×2.4(D)	mm
Number of Colors	16.7M	-
Display Mode	Normally Black	-
Viewing Direction	ALL	-
Display Format	RGB vertical stripe	-
Luminance	320	nit
Contrast Ratio	850(TYP.)	
Surface Treatment	Hard coating	
Interface	MIPI	-
Backlight	White LED	-
Operation Temperature	-10~50	°C
Storage Temperature	-20~60	
	AG: Anti Glare(2H,3H)	-
Polarizer Type	HC: Hard Coating	-

Version: A

2019-06-26

3. External Dimensions

YU DU AMSON ELECTRONICS CO.,LTD.

4. Interface Description

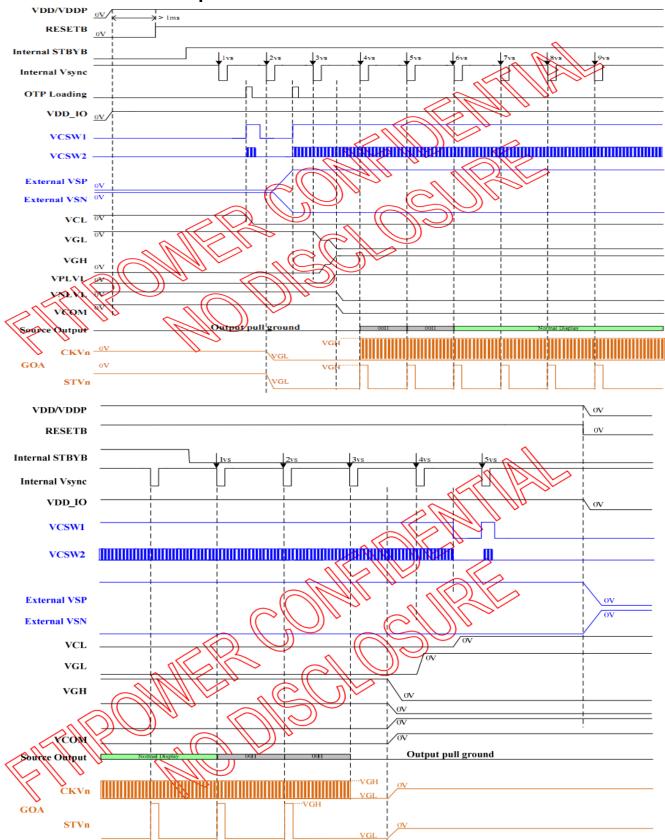
PIN NO.	PIN NAME	DESCRIPTION			
1-3	LEDA	LED backlight (Anode).			
4	NC	No connection			
5~8	LEDK	LED backlight (Cathode).			
9, 10	GND	Power ground			
11	DSI_D2+	MIPI DSI differential data pair			
12	DSI_D2-	MIPI DSI differential data pair			
13	GND	Power ground			
14	DSI_D1+	MIPI DSI differential data pair			
15	DSI_D1-	MIPI DSI differential data pair			
16	GND	Power ground			
17	DSI_CLK+	MIPI DSI differential clock pair			
18	DSI_CLK-	MIPI DSI differential clock pair			
19	GND	Power ground			
20	DSI_D0+	MIPI DSI differential data pair			
21	DSI_D0-	MIPI DSI differential data pair			
22	GND	Power ground			
23	DSI_D3+	MIPI DSI differential data pair			
24	DSI_D3-	MIPI DSI differential data pair			
25	GND	Power ground			
26	NC	NC			
27	Reset	Reset chip			
28	NC	No connection			
29	IOVCC_1V8	Logic Supply Voltage			
30, 31	VCC_3.3V	Analog Supply Voltage			

5. Absolute Maximum Ratings

Parameter	Symbol		Spec.	Unit	Note	
Farameter	Symbol	Min.	Тур.	Max.	Unit	Note
I/O voltogo	VDDIO_IF	1.0		2.6	V	
I/O voltage	VDDIO			3.6	v	
Power input	VDD	2.5	-	36	V	
VSP voltage	VSP	4.5	- /		V	
VSN voltage	VSN	-4.5	-12	6	V	
VOTP power	VOTP	-	X XO	V -	V	
Operating Temperature		-20		85	°C	(1)

Note :(1) Do not let condensation for low temperature

~


6. DC Characteristics

Parameter	Symbol	Spec.			Unit	Note	
Farameter	Symbol	Min.	Тур.	Max.	Om	Note	
VDD voltage	VDD 🕥		3.3		V	Digital supply voltage	
VDDP voltage	VDQP				V	Analog supply voltage	
VDDIO voltage	DDO	V 1		-	V	I/O Power supply voltage	
VOTP voltage	WQTP		₩.5	-	V	Programming voltage	
VSP voltage	VSP ,		5.0	6	V	VSP voltage	
VSN voltage	VSN (48	-5.0	-6	V	VSN voltage	
VGH voltage	VGH	9.3	-	18	V	VGH voltage	
VGL voltage	VGL	-16	-	-6.7	V	VGL voltage	

7. Timing Characteristics

7.1. Power ON/OFF Sequence

Version: A

2019-06-26

7.2 MIPI Characteristics

7.2.1 DC Specifications High-Speed Receiver Specification

(Test condition: VCI=1.6~3.6V, TA=-20[®]C ~+85[®]C ,VSS=VSSA=0V)

Devenuet	Querral		Unit	Note			
Paramet	er	Symbol	Min.	Тур.	Max.	Unit	Note
VDDIO Input high level voltage		VIH	0.8 x VDDIO		VDDIO	V	
VDDIO input low level voltage		VIL	VSS		0.2 x VDDIO	V	
Input Leakage Current		lleak	(-1)		(+1)	μA	
VGL_REG2 output voltage		VGL_REG2	6	TBD		V	
VGMP output voltage		VGMP	200	TBD		V	
VGMN output voltage		VGMN	16/1/1	TBD		V	
VCI1 output voltage		VCH	W V .	TBD		V	
VGL output voltage		KGL Q	-16		-6	V	
VGH output voltage		VGH_0	8		19	V	
VCL output voltage		WCL	E.1	-2.4	-3	V	
VOM output voltage		VCOM 🔨	275	-1.48	-0.2	V	
Input terminal resistance	\bigcirc	₹ 1 ₽		100		ohm	
	Graycode = 0 - 14 Graycode = 241 ~ 255	()	Ð	TBD		mV	
Source output level deviation	Graycode = 15 ~ 31 Craycode = 208 - 240			TBD		mV	
	Graycode = 32 - 207			TBD		mV	
	Graycode = 0 + 14 Graycode = 241 ~ 255	-		TBD		mV	
Source output offset deviation	Graycode = 15 ~ 31 Graycode = 208 ~ 240	-		TBD		mV	
	Graycode = 32 ~ 207	-		TBD		mV	
Current consumption	Analog Operating	IAOP		TBD		mA	
	Analog Stand-by	IAST		TBD		mA	
Rush current		lvddpeak		TBD		mA	
VOTP operation current		lvpp		TBD		mA	

7.2.2 MIPI AC characteristics

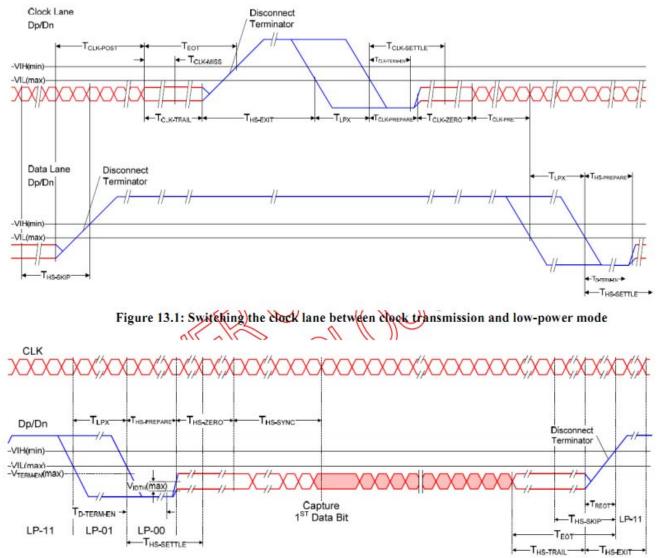


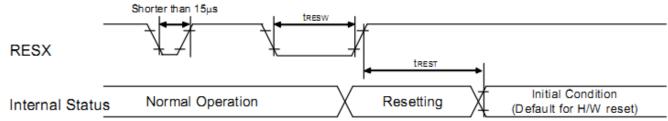
Figure 13.2: Timing of high-speed data transmission in bursts

Version: A

2019-06-26

7.3 MIPI data-clock timing specification

Demonstern	Descript	Spec.			
Parameter	Descript	Min.	Тур.	Max.	Unit
T _{REOT}	30%-85% rise time and fall time	-	-	35	ns
T _{CLK-MISS}	Timeout for receiver to detect absence of Clock transitions and disable the Clock Lane HS-RX.	-	-	60	ns
T _{CLK-POST} *1	Time that the transmitter continues to send HS clock after the last associated Data Lane has transitioned to LP Mode. Interval is defined as the period from the end of $T_{HS-TRAIL}$ to the beginning of $T_{CLK-TRAIL}$.	60 ns + 52*0 (For DOS)	<u>.</u>		ns
T _{clk.pre}	Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode.	8	-		ns
T _{clk-settle}	Time interval during which the HS receiver shall ignore any Clock Lane HS transitions, starting from the beginning of T _{CLK+PRE} .	95	-	300	ns
T _{clk-term-en}	Time for the Clock Lane receive to enable the HS line termination, starting from the time point when Dn crosses $V_{\text{IL,MAX}}$.	-	38	ns	
T _{HS-SETTLE}	Time interval during which the HS received shall ignore any Data Lane HS transitions, starting from the beginning of ThisPREPARE.	-	145 ns + 10*UI	ns	
TEOT	Time from start of THETRAID or TELE-TRAIL period to start of LP-11	-	-	105ns+48*UI	-
THS-EXIT	time to drive LP- 1 after HS burst	100 -		-	ns
T _{hs-prepare}	Time to drive LP-00 to prepare for HS transmission	40ns + 4*UI	-	85ns+6*UI	ns
T _{HS-PREPARE} + T _{HS-ZERO}	T _{HS-PREPARE} + Time to drive HS-0 before the Sync sequence	145ns + 10*U	-	-	ns
T _{HS-SKIP}	Time-out at RX to ignore transition period of EoT	40 -		55ns+4*UI	ns
T _{HS-TRAIL}	Time to drive flipped differential state after last payload data bit of a HS transmission burst	60 + 4*UI -		-	ns
T _{LPX}	Length of any Low-Power state period	50 -		-	ns
Ratio T _{LPX}	Ratio of $T_{LPX(MASTER)}/T_{LPS(SLAVE)}$ between Master and Slave side	e 2/3 - 3/2		3/2	-
T _{TA-GET}	Time to drive LP-00 by new TX		5*T _{LPX}	·	ns
T _{ta-go}	Time to drive LP-00 after Turnaround Request		$4^{\star}T_{LPX}$		ns
T _{TA-SURE}	Time-out before new TX side starts driving	T _{LPX}	-	2*T _{LPX}	ns


Note: (1) For image transmission:

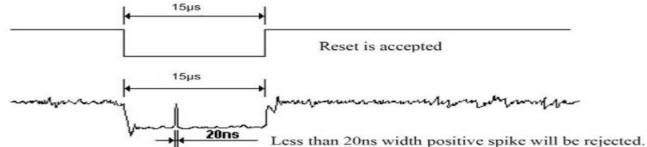
TCLK-POST min value =164 when MIPI max frequency per lane = 0.53Gbps.

TCLK-POST min value =112 when MIPI max frequency per lane = 1Gbps

7.4. Reset Timing Characteristics

Reset timing:

IOVCC=1.65V to 3.6V, AGND=DGND=0V, Ta=-40 to 85°C


Symbol	Parameter	Related Pins	MIN	TYP	MAX	Note	Unit
t _{RESW}	*1) Reset low pulse width	RESX	15	-	-		μs
	*2) Pasat complete time	-	-	-	5	When reset applied during sleep-in mode	ms
t _{rest}	*2) Reset complete time	-		-	120	When reset applied during sleep-out mode	ms

RESX Pulse	Action
Shorter than 5µs Reset Rejected	
Longer than 15µs	IC Reset
Detween Eve and 15ve	Reset starts
Between 5µs and 15µs	(It depends on voltage and temperature condition.)

Note 1) Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below.

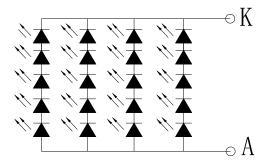
Note 2. During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In –mode) and then return to Default condition for H/W reset. Note 3. During Reset Complete Time, data in MTP will be latched to internal register during this period. This loading is done every time when there is H/W reset complete time (tREST) within 5ms after a rising edge of RESX.

Note 4. Spike Rejection also applies during a valid reset pulse as shown below:

Note 5. It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.

7.5 Input Timing table

For 800RGBx1280

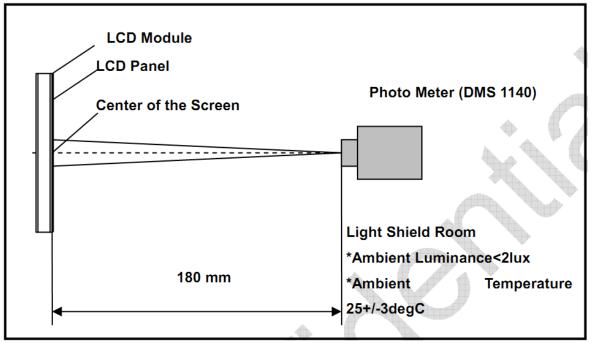

Decemeter	Cumbol	Value			Linit		
Parameter	Symbol	Min.	Тур.	Max.	Unit		
MIPI (4 Lane) @Frame rate=60Hz			432		Mbps		
MIPI (3 Lane) @Frame rate=60Hz			576		Mbps		
DCLK frequency @Frame rate=60Hz	FDCLK		71.9		MHz		
HSYNC period time	Тн		920		DCLK		
Horizontal display area	Тнр		800		DCLK		
HSYNC pulse width	THPW		24	-	DCLK		
HSYNC back porch	Тнвр		24	-	DCLK		
HSYNC front porch	Тевр		72	-	DCLK		
VSYNC period time	Τv		1304	~ ^	н		
Vertical display area	Tvo ,		1280		н		
VSYNC pulse width	Tvp	MAN .	2	O_{-}	> н		
VSYNC back porch	Te	110-	AR 1	IL-22	н		
VSYNC front porch	(TVFP)		Gal	<u>ه ` (</u>	н		
MIPI Frequency = (Frame rate) TH X TV & 24bits.							

Version: A

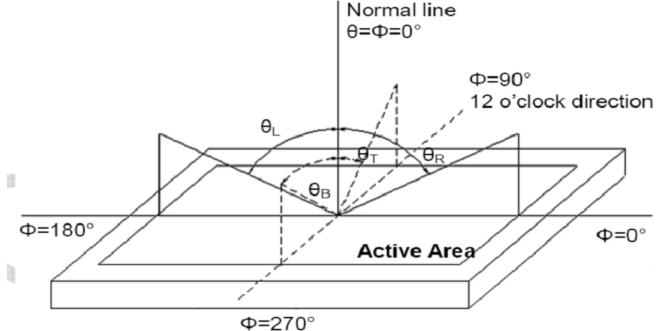
2019-06-26

8. Backlight Characteristic

(5串4并 20颗LED)

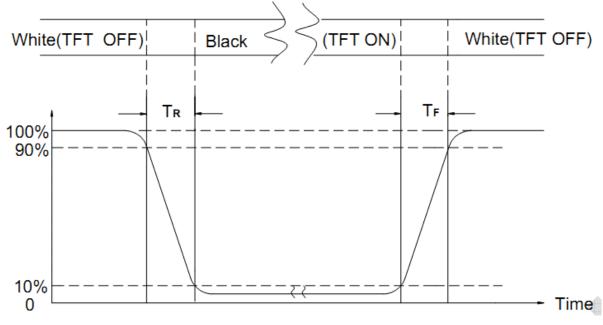

Item	Symbol	MIN	TYP	MAX	UNIT	Test Condition	
Supply Voltage	Vf	22	24	25	V	lf=60mA	
Supply Current	lf	-	40	-	mA		
Luminous Intensity for LCM	-	200	250	-	cd/m ²	lf=60mA	
Uniformity for LCM	-	80	-	-	%	lf=60mA	
Life Time	-	0	20000	-	Hr	lf=60mA	
Backlight Color	White						

9. Optical Characteristics


Item	Condition	S	Min.	Тур.	Max.	Unit	Note	
	Horizontal	θL	-	80	-	degree		
Viewing Angle		θR	-	80	-		(1),(2),(6)	
(CR>10)	Vertical	θт	-	80	-			
	ventical	θв	-	80	-			
Contrast Ratio	Center		600	800	-	-	(1),(3),(6)	
Response Time	Rising			25		ms	(1),(4),(6)	
	Falling		-	25	-			
	Red x			TBD		-		
	Red y			TBD		-		
	Green x			TBD	Typ. +0.05	-		
CF Color	Green y			TBD		-	(1) (6)	
Chromaticity (CIE1931)	Blue x		Тур.	TBD		-	(1), (6)	
	Blue y		-0.05	TBD		-		
	White x			TBD		-		
	White y			TBD		-		

Note (1) Measurement Setup: The LCD module should be stabilized at given temp. 25°C for 15 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 15 minutes in a windless room.

Note (2) Definition of Viewing Angle



Note (3) Definition of Contrast Ratio (CR)

The contrast ratio can be calculated by the following expression Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63, L0: Luminance of gray level 0

Note (4) Definition of response time

Note (5) Definition of Transmittance (Module is without signal input) Transmittance = Center Luminance of LCD / Center Luminance of Back Light x 100%

Note (6) Definition of color chromaticity (CIE1931)

Color coordinates measured at the center point of LCD

10. Reliability Test Conditions and Methods

NO.	TEST ITEMS	TEST CONDITION	INSPECTION AFTER TEST	
1	High Temperature Storage	80°C±2°C×96Hours		
2	Low Temperature Storage	-30°C±2°C×96Hours		
3	High Temperature Operating	70°C±2°C×96Hours		
4	Low Temperature Operating	-20°C±2°C×96Hours	Inspection after 2~4hours storage at room temperature, the samples	
5	Temperature Cycle(Storage)	-20°C (30min) (5min) (30min) 1cycle Total 10cycle	should be free from defects: 1, Air bubble in the LCD. 2, Seal leak. 3, Non-display. 4, Missing segments.	
6	Damp Proof Test (Storage)	50°C±5°C×90%RH×96Hours	5, Glass crack. 6, Current IDD is twice	
7	Vibration Test	Frequency:10Hz~55Hz~10Hz Amplitude:1.5MM X,Y,Z direction for total 3hours (packing condition test will be tested by a carton)	higher than initial value. 7, The surface shall be free from damage. 8, The electric characteristic requirements shall be satisfied.	
8	Drooping Test	Drop to the ground from 1M height one time every side of carton. (packing condition test will be tested by a carton)		
9	ESD Test	Voltage:±8KV,R:330Ω,C:150PF,Air Mode,10times		

REMARK:

1, The Test samples should be applied to only one test item.

2, Sample side for each test item is 5~10pcs.

3,For Damp Proof Test, Pure water(Resistance > $10M\Omega$)should be used.

4, In case of malfunction defect caused by ESD damage, if it would be recovered to normal state after resetting, it would be judge as a good part.

5, EL evaluation should be accepted from reliability test with humidity and temperature: Some defects such as black spot/blemish can happen by natural chemical reaction with humidity and Fluorescence EL has.

6, Failure Judgment Criterion: Basic Specification Electrical Characteristic, Mechanical Characteristic, Optical Characteristic.

Version: A

AM-8001280-070A-A250

2019-06-26

11. Inspection Standard

11.1. QUALITY :

THE QUALITY OF GOODS SUPPLIED TO PURCHASER SHALL COME UP TO THE FOLLOWING STANDARD. 11.1.1. THE METHOD OF PRESERVING GOODS

AFTER DELIVERY OF GOODS FROM AMSON TO PURCHASER. PURCHASER SHALL CONTROL THE LCM AT -10 $^\circ$ C to 40 $^\circ$ C , and it might be desirable to keep at the normal room temperature and humidity until incoming inspection or throwing into process line.

11.1.2. INCOMING INSPECTION

(A) THE METHOD OF INSPECTION

IF PURCHASER MAKE AN INCOMING INSPECTION, A SAMPLING PLAN SHALL BE APPLIED ON THE CONDITION THAT QUALITY OF ONE DELIVERY SHALL BE REGARDED AS ONE LOT.

(B) THE STANDARD OF QUALITY

ISO-2859-1 (SAME AS MIL-STD-105E), LEVEL II SINGLE PLAN.

CLASS	AQL(%)
CRITICAL	0.4 %
MAJOR	0.65 %
MINOR	1.5 %
TOTAL	1.5 %

EVERY ITEM SHALL BE INSPECTED ACCORDING TO THE CLASS.

(C) MEASURE

IF AS THE RESULT OF ABOVE RECEIVING INSPECTION, A LOT OUT IS DISCOVERED. PURCHASER SHALL BE INFORM SELLER OF IT WITHIN SEVEN DAYS. BUT FIRST SHIPMENT WITHIN FOURTEEN DAYS.

11.1.3. WARRANTY POLICY

AMSON WILL PROVIDE ONE-YEAR WARRANTY FOR THE PRODUCTS ONLY IF UNDER SPECIFICATION OPERATING CONDITIONS. AMSON WILL REPLACE NEW PRODUCTS FOR THESE DEFECT PRODUCTS WHICH UNDER WARRANTY PERIOD AND BELONG TO THE RESPONSIBILITY OF AMSON.

- 11.2. CHECKING CONDITION
- 11.2.1. CHECKING DIRECTION SHALL BE IN THE 45 DEGREE AREA TO FACE THE SAMPLE.
- 11.2.2. CHECKER SHALL SEE OVER 300±25 mm. WITH BARE EYES FAR FROM SAMPLE AND USING 2 PCS. OF 20W FLUORESCENT LAMP.

11.3. INSPECTION PLAN :

·			
CLASS	ITEM	JUDGEMENT	CLASS
PACKING &	1. OUTSIDE AND INSIDE PACKAGE	"MODEL NO." , "LOT NO." AND "QUANTITY" SHOULD INDICATE ON THE PACKAGE.	Minor
INDICATE	2. MODEL MIXED AND QUANTITY	OTHER MODEL MIXEDREJECTED	Critical
	3. PRODUCT INDICATION	"MODEL NO." SHOULD INDICATE ON THE PRODUCT	Major
ASSEMBLY	4. DIMENSION, LCD GLASS SCRATCH AND SCRIBE DEFECT.	ACCORDING TO SPECIFICATION OR DRAWING.	Major
	5. VIEWING AREA	POLARIZER EDGE OR LCD'S SEALING LINE IS VISABLE IN THE VIEWING AREA REJECTED	Minor
	6. BLEMISH V BLACK SPOT V WHITE SPOT IN THE LCD AND LCD GLASS CRACKS	ACCORDING TO STANDARD OF VISUAL INSPECTION(INSIDE VIEWING AREA)	Minor
APPEARANCE	7. BLEMISH • BLACK SPOT WHITE SPOT AND SCRATCH ON THE POLARIZER	ACCORDING TO STANDARD OF VISUAL INSPECTION(INSIDE VIEWING AREA)	Minor
	8. BUBBLE IN POLARIZER	ACCORDING TO STANDARD OF VISUAL INSPECTION(INSIDE VIEWING AREA)	Minor
	9. LCD'S RAINBOW COLOR	STRONG DEVIATION COLOR (OR NEWTON RING) OF LCDREJECTED. OR ACCORDING TO LIMITED SAMPLE (IF NEEDED, AND INSIDE VIEWING AREA)	Minor
	10. ELECTRICAL AND OPTICAL CHARACTERISTICS (CONTRAST, VOP, CHROMATICITY ETC)	ACCORDING TO SPECIFICATION OR DRAWING . (INSIDE VIEWING AREA)	Critical
ELECTRICAL	11.MISSING LINE	MISSING DOT · LINE · CHARACTER REJECTED	Critical
	12.SHORT CIRCUIT- WRONG PATTERN DISPLAY	NO DISPLAY VRONG PATTERN DISPLAY CURRENT CONSUMPTION OUT OF SPECIFICATION REJECTED	Critical
	13. DOT DEFECT (FOR COLOR AND TFT)	ACCORDING TO STANDARD OF VISUAL	Minor

11.4. STANDARD OF VISUAL INSPECTION

NO.	CLASS	ITEM	JUDGEMENT			
			(A) ROUND TYPE: unit : mm.			
			DIAMETER (mm.) ACCEPTABLE Q'TY			
			$\Phi \leq 0.1$ DISREGARD			
		BLACK AND WHITE SPOT	$0.1 < \Phi \leq 0.25$ 3 (Distance>5mm)			
		FOREIGN MATERIEL	0.25 < Φ 0			
11.4.1	MINOR		NOTE: $\Phi = (\text{LENGTH} + \text{WIDTH})/2$			
		BLEMISH	(B) LINEAR TYPE: unit : mm.			
		SCRATCH	LENGTH WIDTH ACCEPTABLE Q'TY			
			$W \leq 0.03$ DISREGARD			
			L ≤ 5.0 0.03 < W ≤0.07 3 (Distance>5mm) 0.07 <			
			unit : mm.			
			DIAMETER ACCEPTABLE Q'TY			
		BUBBLE IN POLARIZER DENT ON POLARIZER	$\Phi \leq 0.2$ DISREGARD			
11.4.2	MINOR		$0.2 < \Phi \leq 0.5$ 2 (Distance>5mm)			
			0.5 < Φ 0			
		Dot Defect	Items ACC. Q'TY			
			Bright dot $N \le 4$			
			Dark dot N≦ 4			
			Pixel Define : Pixel			
			R G B			
11 4 3	MINOR					
11.4.0	in tort		← Dot →← Dot →			
			Note 1: The definition of dot: The size of a defective dot over			
			1/2 of whole dot is regarded as one defective dot.			
			Note 2: Bright dot: Dots appear bright and unchanged in size			
			in which LCD panel is displaying under black pattern.			
			Note 3: Dark dot: Dots appear dark and unchanged in size in			
			which LCD panel is displaying under pure red, green			
			,blue pattern.			

Version: A

2019-06-26

NO.	CLASS	ITEM	JUDGEMEN	T
11.4.4	MINOR	LCD GLASS CHIPPING	F - K - K	Y > S Reject
11.4.5	MINOR	LCD GLASS CHIPPING	S X S	X or Y > S Reject
11.4.6	MAJOR	LCD GLASS GLASS CRACK	Y Y	Y > (1/2) T Reject
11.4.7	MAJOR	LCD GLASS SCRIBE DEFECT	$A_{\frac{1}{7} \vdash a^{-1}}^{\underline{k}} \xrightarrow{L} \xrightarrow{A}_{\frac{1}{7}} B$	 a> L/3, A>1.5mm. Reject B: ACCORDING TO DIMENSION
11.4.8	MINOR	LCD GLASS CHIPPING (ON THE TERMINAL AREA)	T	$\Phi = (x+y)/2 > 2.5 \text{ mm}$ Reject
11.4.9	MINOR	LCD GLASS CHIPPING (ON THE TERMINAL SURFACE)	T Z X	Y > (1/3) T Reject
11.4.10	MINOR	LCD GLASS CHIPPING	X Y Z	Y > T Reject

12. Handling Precautions

12.1. Mounting method

The LCD panel of AMSON TFT module consists of two thin glass plates with polarizes which easily be damaged. And since the module in so constructed as to be fixed by utilizing fitting holes in the printed circuit board.

Extreme care should be needed when handling the LCD modules.

12.2. Caution of LCD handling and cleaning

When cleaning the display surface, Use soft cloth with solvent

[Recommended below] and wipe lightly

- Isopropyl alcohol
- Ethyl alcohol

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface.

Do not use the following solvent:

- Water
- Aromatics

Do not wipe ITO pad area with the dry or hard materials that will damage the ITO patterns Do not use the following solvent on the pad or prevent it from being contaminated:

- Soldering flux
- Chlorine (CI) , Sulfur (S)

If goods were sent without being silicon coated on the pad, ITO patterns could be damaged due to the corrosion as time goes on.

If ITO corrosion happen by miss-handling or using some materials such as Chlorine (CI), Sulfur (S) from customer, Responsibility is on customer.

12.3. Caution against static charge

The LCD module use C-MOS LSI drivers, so we recommended that you:

Connect any unused input terminal to power or ground, do not input any signals before power is turned on, and ground your body, work/assembly areas, and assembly equipment to protect against static electricity.

12.4. packing

- Module employs LCD elements and must be treated as such.
- Avoid intense shock and falls from a height.
- To prevent modules from degradation, do not operate or store them exposed direct to sunshine or high temperature/humidity

12.5. Caution for operation

- It is an indispensable condition to drive LCD's within the specified voltage limit since the higher voltage then the limit cause the shorter LCD life.
- An electrochemical reaction due to direct current causes LCD's undesirable deterioration, so that the use of direct current drive should be avoided.
- Response time will be extremely delayed at lower temperature then the operating temperature range and on the other hand at higher temperature LCD's how dark color in them. However those phenomena do not mean malfunction or out of order with LCD's, which will come back in the specified operation temperature.
- If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
- Slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.

Usage under the maximum operating temperature, 50%Rh or less is required.

12.6. storing

In the case of storing for a long period of time for instance, for years for the purpose or replacement use, the following ways are recommended.

- Storage in a polyethylene bag with the opening sealed so as not to enter fresh air outside in it. And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light's keeping the storage temperature range.
- Storing with no touch on polarizer surface by the anything else. [It is recommended to store them as they have been contained in the inner container at the time of delivery from us.

12.7. Safety

- It is recommendable to crash damaged or unnecessary LCD's into pieces and wash off liquid crystal by either of solvents such as acetone and ethanol, which should be burned up later.
- When any liquid leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water.

13. Precaution for Use

13.1.

A limit sample should be provided by the both parties on an occasion when the both parties agreed its necessity. Judgment by a limit sample shall take effect after the limit sample has been established and confirmed by the both parties.

13.2.

On the following occasions, the handing of problem should be decided through discussion and agreement between responsible of the both parties.

- When a question is arisen in this specification.
- When a new problem is arisen this is not specified in this specification.
- When an inspection specifications change or operating condition change in customer is reported to AMSON TFT and some problem is arisen in this specification due to the change.
- When a new problem is arisen at the customer's operating set for sample evaluation in the customer site.

14. Packing Method TBD