Version: A

2015-04-22

Specification for Approval

Customer:	
Model Name:	

Sı	upplier Approv	Customer approval	
R&D Designed	R&D Approved	QC Approved	
Peter	Peng Jun		

Version: A

2015-04-22

Revision Record

REV NO.	REV DATE	CONTENTS	Note
Α	2015-04-22	NEW ISSUE	

Version: A

2015-04-22

Table of Contents

List	Description	Page No.
	Cover	1
	Revision Record	2
	Table of Contents	3
1	Scope	4
2	General Information	4
3	External Dimensions	5
4	Interface Description	6
5	Absolute Maximum Ratings	7
6	Electrical Characteristics	7
7	Timing Characteristics	8
8	Backlight Characteristics	13
9	Optical Characteristics	14
10	Reliability Test Conditions And Methods	16
11	Inspection Standard	17
12	Handling Precautions	23
13	Precaution for Use	24
14	Packing Method	24

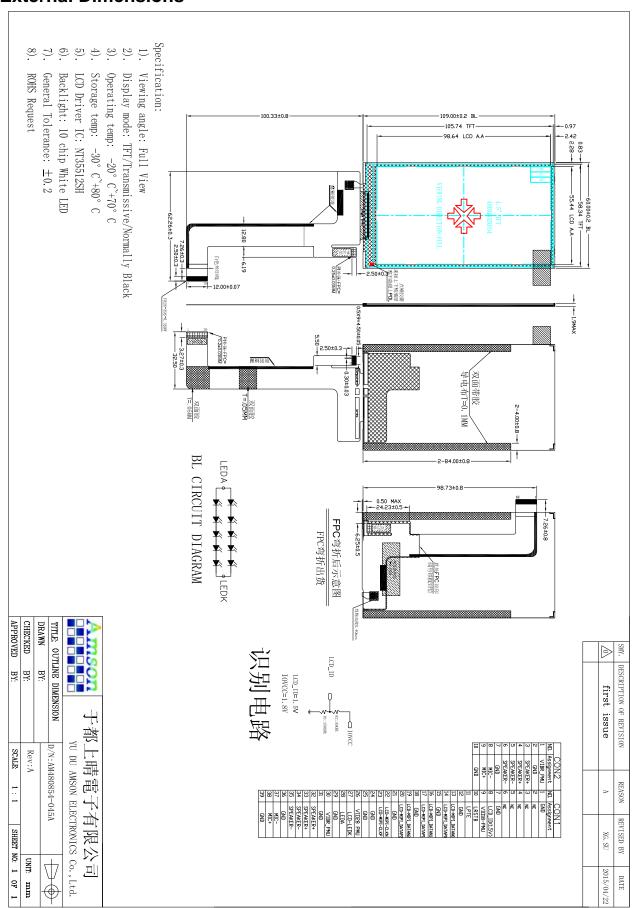
Version: A

2015-04-22

1. Scope

This specification defines general provisions as well as inspection standards for TFT module supplied by AMSON electronics.

If the event of unforeseen problem or unspecified items may occur, naturally shall negotiate and agree to solution


2. General Information

ITEM	STANDARD VALUES	UNITS
LCD type	4.46"TFT	
Dot arrangement	480(RGB)×854	dots
Color filter array	RGB vertical stripe	
Display mode	Transmission / Normally Black	-
Viewing Direction	Full view	
Driver IC	NT35512SH	
Module size	60.0(W)×109.0(H)×1.87(T)	mm
Active area	55.44(W)×98.64(H)	mm
Interface	MIPI interface	
Operating temperature	-20 ~ +70	°C
Storage temperature	-30 ~ +80	°C
Back Light	10 White LED	
Weight	TBD	g

Version: A

2015-04-22

3. External Dimensions

Version: A

2015-04-22

4. Interface Description CON1

PIN NO.	PIN NAME	DESCRIPTION
1	GND	Power ground
2~6	NC	No connection
7	GND	Power ground
8	ID	Add ID bit hardwired in flex, for display identification back to Sitar
9	VCI	Logic Supply Voltage
10	RESET	Reset pin setting either pin low initializes the chip
11	TE	Tearing effect
12	GND	Power ground
13	MIPI_0N	MIPI Negative data signal(-)
14	MIPI_0P	MIPI Positive data signal(+)
15	GND	Power ground
16	MIPI_1N	MIPI Negative data signal(-)
17	MIPI_1P	MIPI Positive data signal(+)
18	GND	Power ground
19~20	NC	No connection
21	GND	Power ground
22	MIPI_CKN	MIPI Negative clock signal(-)
23	MIPI_CKP	MIPI Positive clock signal(+)
24~25	GND	Power ground
26	VCC	Analog Supply Voltage
27	LEDK	The cathode of LED power
28	LEDA	The Anode of LED power
29	GND	Power ground
30	VIBR_PMU	
31	GND	Power ground
32	SPEAKER+	
33	SPEAKER+	
34	SPEAKER-	
35	SPEAKER-	
36	GND	Power ground
37	MIC-	
38	MIC+	
39	GND	Power ground

Version: A

2015-04-22

CON₂

PIN NO.	PIN NAME	DESCRIPTION
1	VIBR_PMU	
2	GND	Power ground
3	SPEAKER+	
4	SPEAKER+	
5	SPEAKER-	
6	SPEAKER-	
7	GND	Power ground
8	MIC-	
9	MIC+	
10	GND	Power ground

5. Absolute Maximum Ratings

Item	Symbol	Min.	Max.	Unit
Logic Supply Voltage	VCI	-0.3	3.6	V
Analog Supply Voltage	VCC	-0.3	4.6	V
Input Voltage	Vin	-0.3	VCI +0.3	V
Operating Temperature	Тор	-20	70	°C
Storage Temperature	Тѕт	-30	80	°C
Storage Humidity	HD	20	90	%RH

6. DC Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Logic Supply Voltage	VCI	1.65	1.8	3.3	V	-
Analog Supply Voltage	VCC	2.5	3.3	3.5	V	-
Input High Voltage	V_{IH}	0.7VCI	-	VCI	V	-
Input Low Voltage	V _{IL}	GND	-	0.3 VCI	V	-
Output High Voltage	V_{OH}	0.8 VCI	-	VCI	V	-
Output Low Voltage	V _{OL}	GND	-	0.2 VCI	V	-
I/O Leak Current	ILI	-1	-	1	uA	-

Version: A

2015-04-22

7. Timing Characteristics

7.1 High Speed Mode

(VSS=VSSI=DVSS=0V, VDDI=1.65V to 3.3V, VDD=2.5V to 3.5V, Ta = -30 to 70° C)

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
DSI-CLK+/-	2xUIINST	Double UI instantaneous	4	-	25	ns	
DSI-CLK+/-	UIINSTA UIINSTB	UI instantaneous halfs	2	1	12.5	ns	UI = UIINSTA = UIINSTB
DSI-Dn+/-	tos	Data to clock setup time	0.15xUI	-	-	ps	
DSI-Dn+/-	tон	Data to clock hold time	0.15xUI	1	-	ps	
DSI-CLK+/-	tortclk	Differential rise time for clock	150	-	0.3xUI	ps	
DSI-Dn+/-	t DRTDATA	Differential rise time for data	150	-	0.3xUI	ps	
DSI-CLK+/-	t _{DFTCLK}	Differential fall time for clock	150	1	0.3xUI	ps	
DSI-Dn+/-	t DFTDATA	Differential fall time for data	150	-	0.3xUI	ps	

Note) Dn = D0 and D1.

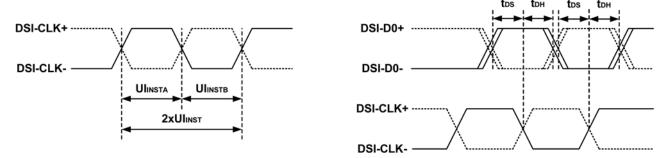


Fig. 7.1.1 DSI clock channel timing

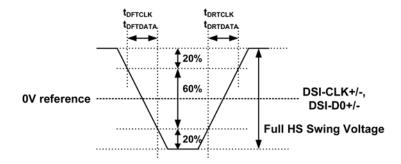


Fig. 7.1.2 Rising and fall time on clock and data channel

Version: A

2015-04-22

7.2 Low Power Mode

(VSS=VSSI=DVSS=0V, VDDI=1.65V to 3.3V, VDD=2.5V to 3.5V, Ta = -30 to 70° C)

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
DSI-D0+/-	Тьрхм	Length of LP-00, LP-01, LP-10 or LP-11 periods MPU ⊠ Display Module	50	-	75	ns	Input
DSI-D0+/-	TLPXD	Length of LP-00, LP-01, LP-10 or LP-11 periods Display Module ⊠ MPU	50	1	75	ns	Output
DSI-D0+/-	TTA-SURED	Time-out before the MPU start driving	TLPXD	1	2xTlpxd	ns	Output
DSI-D0+/-	Tta-getd	Time to drive LP-00 by display module	5xTlpxd	1	ı	ns	Input
DSI-D0+/-	Tta-god	Time to drive LP-00 after turnaround request - MPU	4xTLPXD	1	1	ns	Output

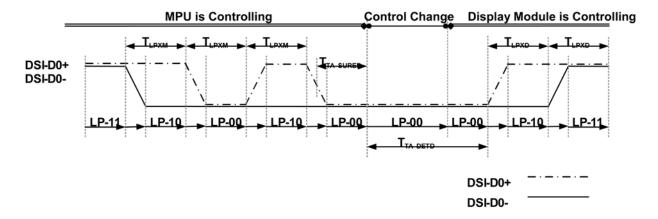


Fig. 7.2.1 Bus Turnaround (BAT) from MPU to display module Timing

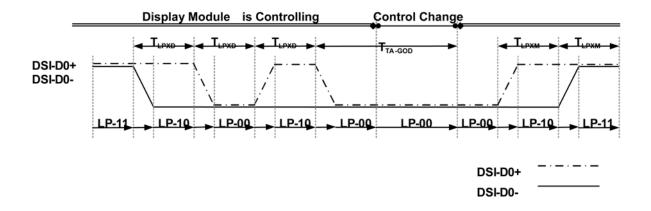


Fig. 7.2.2 Bus Turnaround (BAT) from display module to MPU Timing

Version: A

2015-04-22

7.3 DSI Bursts

(VSS=VSSI=DVSS=0V, VDDI=1.65V to 3.3V, VDD=2.5V to 3.5V,Ta = -30 to 70 °C)

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
		Low Power Mode to High	Speed Mode	Timing			
DSI-Dn+/-	TLPX	Length of any low power state period	50	-	-	ns	Input
DSI-Dn+/-	Ths-prepare	Time to drive LP-00 to prepare for HS transmission	40+4xUI	-	85+6xUI	ns	Input
DSI-Dn+/-	Ths-term-en	Time to enable data receiver line termination measured from when Dn crosses VILMAX	-	-	35+4xUI	ns	Input
		High Speed Mode to Low	Power Mode	Timing			
DSI-Dn+/-	Тнѕ-ѕкір	Time-out at display module to ignore transition period of EoT	40	1	55+4xUI	ns	Input
DSI-Dn+/-	Ths-exit	Time to drive LP-11 after HS burst	100	-	-	ns	Input
DSI-Dn+/-	Ths-trail	Time to drive flipped differential state after last payload data bit of a HS transmission burst	60+4xUI	1	-	ns	Input
		High Speed Mode to/from Lo	w Power Mo	de Timir	ng		
DSI-CLK+/-	Tclk-pos	Time that the MPU shall continue sending HS clock after the last associated data lane has transition to LP mode	60+52xUI	1	-	ns	Input
DSI-CLK+/-	Tclk-trail	Time to drive HS differential state after last payload clock bit of a HS transmission burst	60	-	-	ns	Input
DSI-CLK+/-	Ths-exit	Time to drive LP-11 after HS burst	100	1	-	ns	Input
DSI-CLK+/-	TCLK-PREPARE	Time to drive LP-00 to prepare for HS transmission	38	1	95	ns	Input
DSI-CLK+/-	Tclk-term-en	Time-out at clock lane display module to enable HS transmission	-	1	38	ns	Input
DSI-CLK+/-	Tclk-prepare + Tclk-zero	Minimum lead HS-0 drive period before starting clock	300	-	-	ns	Input
DSI-CLK+/-	TCLK-PRE	Time that the HS clock shall be driven prior to any associated data lane beginning the transition from LP to HS mode	8xUI	-	-	ns	Input

Note) Dn = D0 and D1.

Version: A

2015-04-22

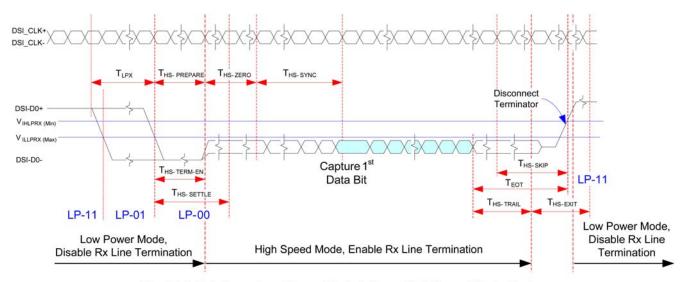


Fig. 7.3.1 Data lanes-Low Power Mode to/from High Speed Mode Timing

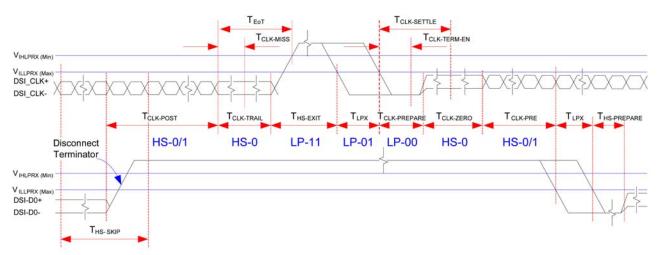


Fig. 7.3.2 Clock lanes- High Speed Mode to/from Low Power Mode Timing

Version: A

2015-04-22

7.4 Reset Timing Characteristics

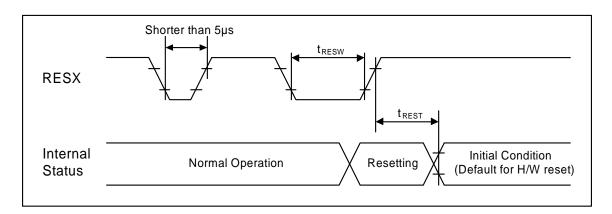
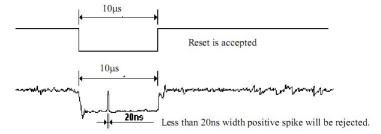


Fig. 7.4 Reset input timing

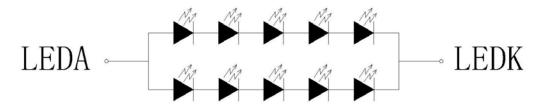

(VSS=VSSI=DVSS=0V, VDDI=1.65V to 3.3V, VDD=2.5V to 3.5V, Ta = -30 to 70° C)

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
	tresw	Reset "L" pulse width (Note 1)	10	•	•	μs	
RESX	t rest	Reset complete time (Note 2)	1	1	5	ms	When reset applied during Sleep In Mode
KLOX			-	-	120	ms	When reset applied during Sleep Out Mode

Note 1) Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below.

RESX Pulse	Action
Shorter than 5µs	Reset Rejected
Longer than 9µs	Reset
Between 5µs and 9µs	Reset Start

- Note 2) During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In–mode) and then return to Default condition for H/W reset.
- Note 3) During Reset Complete Time, values in OTP memory will be latched to internal register during this period. This loading is done every time when there is H/W reset complete time (t_{REST}) within 5ms after a rising edge of RESX.
- Note 4) Spike Rejection also applies during a valid reset pulse as shown below:



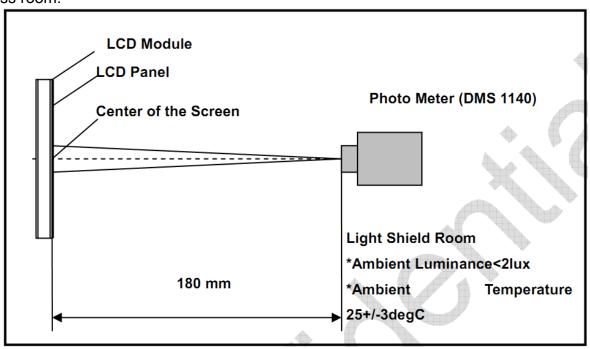
Note 5) It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec

Version: A

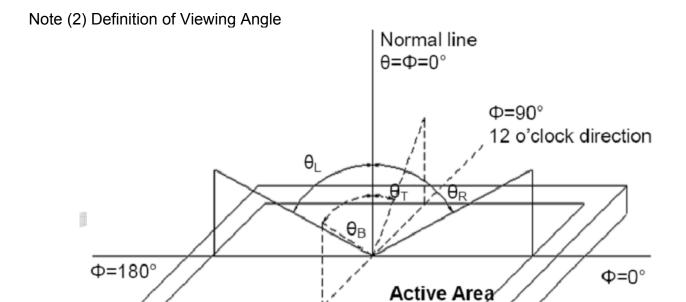
2015-04-22

8. Backlight Characteristic

Item	Symbol	MIN	TYP	MAX	UNIT	Test Condition
Supply Voltage	Vf	14.5	16.0	17.5	V	lf=40mA
Supply Current	If	-	40	50	mA	-
Luminous Intensity for LCM	-	200	250	-	cd/m ²	If=40mA
Uniformity for LCM	-	75	80	-	%	lf=40mA
Life Time	-	-	20000	-	Hr	If=40mA
Backlight Color	White					


Version: A

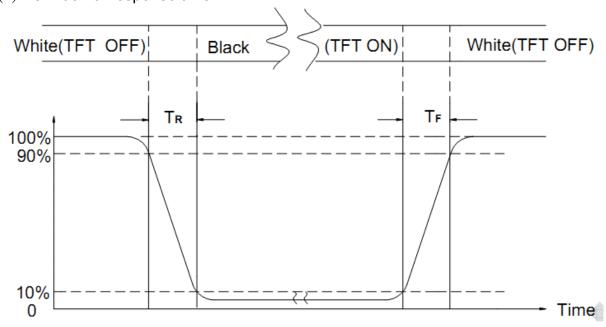
2015-04-22


9. Optical Characteristics

Item	Conditions		Min.	Тур.	Max.	Unit	Note	
	Horizontal	θL	-	80	-			
Viewing Angle	HOHZOHIAI	θR	-	80	-		(1) (2) (6)	
(CR>10)	Vertical	θт	-	80	-	degree	(1),(2),(6)	
	vertical	θв	-	80	-			
Contrast Ratio	Center		-	240	-	-	(1),(3),(6)	
LCM Luminance	Center poi	nt	200	250	-	Cd/m ²		
Response Time	Rising + Fal	ling	-	30	40	ms	(1),(4),(6)	
	Red x			TBD		-		
	Red y Green x			TBD		-	(4) (0)	
				TBD		-		
CF Color	Green y	Green y		TBD		-		
Chromaticity (CIE1931)	Blue x		Тур.	TBD	Тур.	-	(1), (6)	
(=:=:,	Blue y		+0.05	TBD	+0.05	-		
	White x		1	TBD		-		
	White y			TBD		-		

Note (1) Measurement Setup: The LCD module should be stabilized at given temp. 25°C for 15 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 15 minutes in a windless room.

2015-04-22


Note (3) Definition of Contrast Ratio (CR)

The contrast ratio can be calculated by the following expression Contrast Ratio (CR) = L63 / L0

Φ=270°

L63: Luminance of gray level 63, L0: Luminance of gray level 0

Note (4) Definition of response time

Note (5) Definition of Transmittance (Module is without signal input)

Transmittance = Center Luminance of LCD / Center Luminance of Back Light x 100%

Note (6) Definition of color chromaticity (CIE1931)

Color coordinates measured at the center point of LCD

Version: A

2015-04-22

10. Reliability Test Conditions and Methods

NO.	TEST ITEMS	TEST CONDITION	INSPECTION AFTER TEST
	High Temperature Storage	80°C±2°C×200Hours	
	Low Temperature Storage	-30°C±2°C×200Hours	
	High Temperature Operating	70°C±2°C×120Hours	Inspection after 2~4hours
	Low Temperature Operating	-20°C±2°C×120Hours	storage at room temperature, the samples should be free from
	Temperature Cycle(Storage)	-20°C \Longrightarrow 25°C \Longrightarrow 70°C (30min) (30min) 1cycle Total 10cycle	defects: 1, Air bubble in the LCD. 2, Seal leak. 3, Non-display. 4, Missing segments.
	Damp Proof Test (Storage)	50°C±5°C×90%RH×120Hours	5, Glass crack. 6, Current IDD is twice higher than initial value.
	Vibration Test	Frequency:10Hz~55Hz~10Hz Amplitude:1.5M X,Y,Z direction for total 3hours (packing condition test will be tested by a carton)	7, The surface shall be free from damage. 8, The electric characteristic requirements shall be
	Drooping Test	Drop to the ground from 1M height one time every side of carton. (packing condition test will be tested by a carton)	satisfied.
	ESD Test	Voltage:±8KV,R:330Ω,C:150PF,Air Mode,10times	

REMARK:

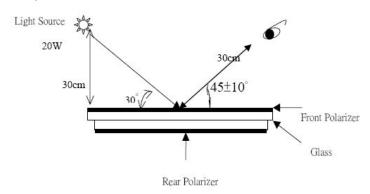
- 1, The Test samples should be applied to only one test item.
- 2, Sample side for each test item is 5~10pcs.
- 3,For Damp Proof Test, Pure water(Resistance > 10M Ω)should be used.
- 4,In case of malfunction defect caused by ESD damage, if it would be recovered to normal state after resetting, it would be judge as a good part.
- 5, EL evaluation should be accepted from reliability test with humidity and temperature: Some defects such as black spot/blemish can happen by natural chemical reaction with humidity and Fluorescence EL has.
- 6, Failure Judgment Criterion: Basic Specification Electrical Characteristic, Mechanical Characteristic, Optical Characteristic.

Version: A

2015-04-22

11. Inspection Standard

AQL(Acceptable Quality Level)
 AQL of major and minor defect


	MAJOR DEFECT	MINOR DEFECT	MAJOR+MINOR
APPEARANCE	0.40%	1.0%	1.0%
ELECTRIC-OPTICAL	0.15%	0.15%	0.15%

2. Basic conditions for inspection

The LCM face to us, in normal environment, the lux is 1000 ± 200 . (Darkroom's $1ux:100\pm 50$),

About an angle of incidence 30, a distance of 30cm with normal eye, with an angle of 45 degree to check the products without uncovering the film!

(As shown below)

- 3. Inspection item and criteria
- 3.1 Visual inspection criterion in immobility

3.1.1 Glass defect

No	Defect item	Criteria	Remark
	Dimension Unconformity	By Engineering Drawing	
1			
	(Major defect)		

Version: A

2015-04-22

No	Defect item	Criteria	Remark
2	Cracks (Major defect)	1.Linear cracks on panel	
3	Glass extrude the conductive area (minor defect)	a: disregards and no influence assemblage 1) b≤1/3Pin width(non bonding area)	a:Length, b:Width
4	Pin-side , conductive area damaged (minor defect)	 (a c : disregards) b≤ 1/3 of effective length for bonding electrode [Accept]	a:Length, b:Width, c:Thickness
5	Pin-side [,] non-conductive area damaged (minor defect)	1) Damage area don't touch the ITO (Inclueling contraposition mark,except scribing mark)	a:Length, b:Width, c:Thickness

Version: A

2015-04-22

No	Defect item Criteria			Remark
	Non-pin-side damage	c <t< td=""><td></td><td>c : Thickness b: width of</td></t<>		c : Thickness b: width of
6	(minor defect)	1) b exceeds 1/3 BM c=T b not touch the seal glue	[Reject]	damage BM 內錄
			[Reject]	

3.1.2 LCD appearance defect (View area)

No	Defect item	Criteria		Remark
	Fiber · glass	Specification	Allowable	note1: L:Length,W:Width
1	cratch · polarizer	0.05mm <w≦0.1mm;< td=""><td>-</td><td>note2: disregard if out of AA</td></w≦0.1mm;<>	-	note2: disregard if out of AA
1	scratch/folded	L≦3.0mm	1	L D
	(minor defect)	W>0.1mm ; L>3.0mm	0	
	Polarizer bubble \	ψ≦0.2mm	disregard	note 1:ψ=(L+W)/2; Length , W:
2	concave and convex (minor defect)	$0.2mm < \psi \le 0.3mm$	2	Width note2: disregard if out of AA
-	(minor delect)	$0.3mm {<} \psi \leqq 0.5mm$	1	notez: disregard il out of AA
		0.5mm<ψ	0	
	Black dots - dirty dots -	ψ≦0.15mm	disregard	note2: disregard if out of AA
2	impurities · eyewinker	$0.15mm{<}\psi \leqq 0.25mm$	2	$\bigcirc \qquad \boxed{\downarrow} \ \phi$
3	.,	$0.25 mm <\!$	1	←→
	(Major defect)	0.3mm<ψ	0	ψ
	Polarizer prick	ψ≦0.1mm	disregard	note1:ψ=(L+W)/2 ; L= Length ,
4	(Major defect)	0.1mm<ψ≦0.25mm	3	W=Width note2: the distance between two
		ψ>0.25mm	0	dots >5mm

Version: A

2015-04-22

3.1.3 .FPC

No	Defect item	Criteria		Remark
1	Copper screen peel (Major defect)	Copper screen peel	[Reject]	
2	No release tape or peel (Major defect)	No release tape or peel	[Reject]	
	Dirty dot and impurity of	Specification	Allowable	note1: Cannot have stride ITO
3	FPC for customer using	ψ≦0.25mm	2	impurities
	side (minor defect)	ψ>0.25	0	

<u>3. I</u>	<u>.4 Black tape & Mara tape</u>			
	FPC or H/S black tape	1.shift spec:		
	shift	1)glue to the polarize		
			[Reject]	
1		2) IC bare	[Reject]	
'	(minor defect)	2. left-and-right spec:		
		1) exceed of FPC edge	or H-S	ı
		edge	[Reject]	
		2)IC bare	[Reject]	
2	No black tape	No black tape		
	(Major defect)		[Reject]	
3	Tape position mistake	Not by engineering draw	/ing	
<u> </u>	(minor defect)		[Reject]	
4	Mara tape defect	Peel before pulling the	protecting	
		film.		
	(minor defect)		[Reject]	

3.1.5 Silicon and Tuffy glue

No	Defect item	Criteria	Remark
1	Quantity of silicon (minor defect)	Uncover the ITO and circuit area. 【Reject】	

Version: A

2015-04-22

No	Defect item	Criteria	Remark	
2	Tuffy glue (minor defect)	Uncover the reveal copper area 【Reject】 Cover layer 0.3mm(Min) ~ 3.0mm(Max) 【accept】	requirement , refer to the technical document.	
3	Depth of glue covering (minor defect)	Depth of glue covering overtop front Polarizer 【Reject】	Except of the special requirement	

3.2 Electrical criteria

0.2	Liectrical criteria	T	
No	Defect item	Criteria	Remark
1	No display (Major defect)	No display 【Reject】	
2	Missing line (Major defect)	Missing line [Reject]	
3	Seg-com light and dark (Major defect)	Seg-com light and dark 【Reject】	ND filter 2% test
4	No display in immobility (Major defect)	No display in immobility 【Reject】	
5	Flicker of Pattern (Major defect)	Flicker of Pattern 【Reject】	
6	Mura (Major defect)	ND filter 2% test	
7	Over current (Major defect)	Over current [Reject]	
8	Voltage out of specification (Major defect)	Voltage out of specification 【Reject】	
9	Pattern blur ,error code (Major defect)	Pattern blur ,error code 【Reject】	
10	Dark light, Flicker (Major defect)	Dark light, Flicker 【Reject】	

Version: A

2015-04-22

No	Defect item	Criteria		Remark
11	Black/White dots Dirty dots eyewinker (Major defect)	Specification	Allowable	Note1: disregard if out of
		ψ≦0.15mm	disregard	AA
		$0.15 mm {<} \psi \leq 0.25 mm$	2	\bigcirc $\downarrow \phi$
		$0.25 mm {<} \psi \leqq 0.3 mm$	1	ψ
		0.3mm<ψ	0	
	Fiber · glass cratch ·	W≦0.03mm	disregard	note1: L : Length , W : Width
	polarizer scratch/folded	0.03mm <w≦0.05mm; L≦3.0mm</w≦0.05mm; 	2	note2: disregard if out of AA
	(minor defect)	0.05mm <w≦0.1mm; L≦3.0mm</w≦0.1mm; 	1	V W
		W>0.1mm ; L>3.0mm	0	

Version: A

2015-04-22

12. Handling Precautions

12.1 Mounting method

The LCD panel of AMSON TFT module consists of two thin glass plates with polarizes which easily be damaged. And since the module in so constructed as to be fixed by utilizing fitting holes in the printed circuit board.

Extreme care should be needed when handling the LCD modules.

12.2 Caution of LCD handling and cleaning

When cleaning the display surface, Use soft cloth with solvent

[Recommended below] and wipe lightly

- Isopropyl alcohol
- Ethyl alcohol

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface.

Do not use the following solvent:

- Water
- Aromatics

Do not wipe ITO pad area with the dry or hard materials that will damage the ITO patterns Do not use the following solvent on the pad or prevent it from being contaminated:

- Soldering flux
- Chlorine (CI), Sulfur (S)

If goods were sent without being silicon coated on the pad, ITO patterns could be damaged due to the corrosion as time goes on.

If ITO corrosion happen by miss-handling or using some materials such as Chlorine (CI), Sulfur (S) from customer, Responsibility is on customer.

12.3 Caution against static charge

The LCD module use C-MOS LSI drivers, so we recommended that you:

Connect any unused input terminal to IOVCC or GND, do not input any signals before power is turned on, and ground your body, work/assembly areas, and assembly equipment to protect against static electricity.

12.4 packing

- Module employs LCD elements and must be treated as such.
- Avoid intense shock and falls from a height.
- To prevent modules from degradation, do not operate or store them exposed direct to sunshine or high temperature/humidity

12.5 Caution for operation

- It is an indispensable condition to drive LCD's within the specified voltage limit since the higher voltage then the limit cause the shorter LCD life.
- An electrochemical reaction due to direct current causes LCD's undesirable deterioration, so that the use of direct current drive should be avoided.
- Response time will be extremely delayed at lower temperature then the operating temperature range and on the other hand at higher temperature LCD's how dark color in them. However those phenomena do not mean malfunction or out of order with LCD's, which will come back in the specified operation temperature.
- If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
- Slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.
 - Usage under the maximum operating temperature, 50%Rh or less is required.

Version: A

2015-04-22

12.6 storing

In the case of storing for a long period of time for instance, for years for the purpose or replacement use, the following ways are recommended.

- Storage in a polyethylene bag with the opening sealed so as not to enter fresh air outside in it. And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light's keeping the storage temperature range.
- Storing with no touch on polarizer surface by the anything else.
 [It is recommended to store them as they have been contained in the inner container at the time of delivery from us

12.7 Safety

- It is recommendable to crash damaged or unnecessary LCD's into pieces and wash off liquid crystal by either of solvents such as acetone and ethanol, which should be burned up later.
- When any liquid leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water

13. Precaution for Use

13.1

A limit sample should be provided by the both parties on an occasion when the both parties agreed its necessity. Judgment by a limit sample shall take effect after the limit sample has been established and confirmed by the both parties.

13.2

On the following occasions, the handing of problem should be decided through discussion and agreement between responsible of the both parties.

- When a question is arisen in this specification
- When a new problem is arisen which is not specified in this specifications
- When an inspection specifications change or operating condition change in customer is reported to AMSON TFT, and some problem is arisen in this specification due to the change
- When a new problem is arisen at the customer's operating set for sample evaluation in the customer site.

14. Packing Method

TBD