

Specification for Approval

Customer:

Model Name:

Sı	Customer approval		
R&D Designed	R&D Approved	QC Approved	
Peter	Peng Jun		

Revision Record

REV NO.	REV DATE	CONTENTS	Note
A	2016-06-18	NEW ISSUE	
			<u> </u>

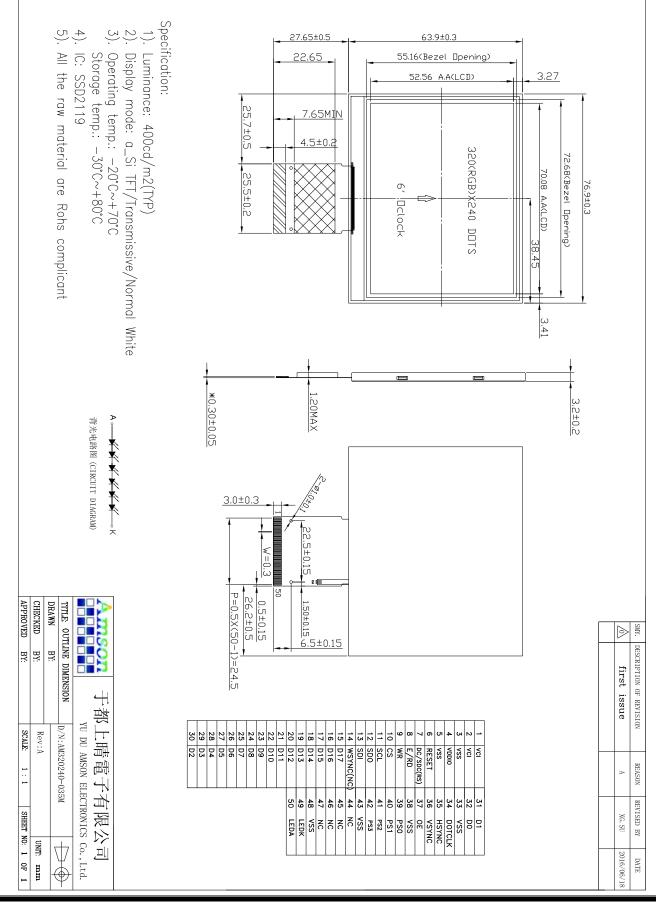
Table of Contents

List	Description	Page No.
	Cover	1
	Revision Record	2
	Table of Contents	3
1	Scope	4
2	General Information	4
3	External Dimensions	5
4	Interface Description	6
5	Absolute Maximum Ratings	8
6	DC Characteristics	8
7	Timing Characteristics	9
8	Backlight Characteristics	13
9	Optical Characteristics	14
10	Reliability Test Conditions and Methods	16
11	Inspection Standard	17
12	Handling Precautions	21
13	Precaution for Use	22
14	Packing Method	22

1. Scope

This specification defines general provisions as well as inspection standards for TFT module supplied by AMSON electronics.

If the event of unforeseen problem or unspecified items may occur, naturally shall negotiate and agree to solution.


2. General Information

ITEM	STANDARD VALUES	UNITS
LCD type	3.5"TFT	
Dot arrangement	320(RGB)×240	dots
Color filter array	RGB vertical stripe	
Display mode	Normally white TN	-
Gray Scale Inversion Direction	6 O'clock	
Eyes Viewing Direction	12 O'clock	
Driver IC	SSD2119	
Module size	76.90(W)×63.90(H)×3.2(T)	mm
Active area	70.08(W)×52.56(H)	mm
Dot pitch	0.219W)×0.219(H)	mm
Interface	4-lines_8bit / 3-lines_9bit SPI 8-/ 9-/16-/18-bit 6800/8080-series system interface 6-/9-/16-/18-bit RGB interface	
Operating temperature	-20 ~ +70	°C
Storage temperature	-30 ~ +80	°C
Back Light	6 White LED	
Weight	TBD	g

AM-320240-035M

3. External Dimensions

YU DU AMSON ELECTRONICS CO.,LTD.

Version: A

2016-06-18

4. Interface Description

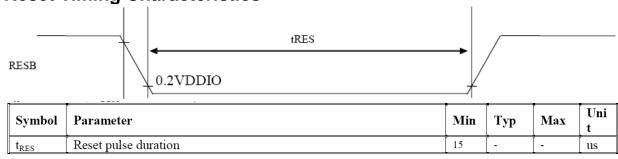
	ace Desc	1
PIN NO.	PIN NAME	DESCRIPTION
1	VCI	Analog Supply Voltage
2	VCI	Analog Supply Voltage
3	VSS	Power ground
4	IOVCC	System power supply
5	VSS	Power ground
6	/RESET	Reset signal input terminal, active at 'L'
7	DC	Register select signal input terminal: DC='H': control register; DC='L': index or status register.
8	RD	Read signal input terminal, Active at 'L'.
9	WR	Write signal input terminal, Active at 'L'. Synchronizing clock signal in SPI mode.
10	CS	Chip select signal input terminal, Active at 'L'
11	SCL	Write signal input terminal, Active at 'L'. Synchronizing clock signal in SPI mode.
12	SDO	SPI interface output pin.
13	SDI	SPI interface input pin.
14	WSYNC	Ram write synchronization output
15	D17	Data bus
16	D16	Data bus
17	D15	Data bus
18	D14	Data bus
19	D13	Data bus
20	D12	Data bus
21	D11	Data bus
22	D10	Data bus
23	D9	Data bus
24	D8	Data bus
25	D7	Data bus
26	D6	Data bus
27	D5	Data bus
28	D4	Data bus
29	D3	Data bus
30	D2	Data bus
31	D1	Data bus
32	D0	Data bus
33	VSS	Power ground
34	DOTCLK	Dot clock signal for RGB interface operation.
35	HSYNC	Line synchronizing signal for RGB interface operation.
36	VSYNC	Frame synchronizing signal for RGB interface operation.
37	DE	Data ENEABLE signal for RGB interface operation.
<u>ı</u>		· · · ·

38	VSS	Power ground
39	PS0	Select the MPU system interface mode
40	PS1	Select the MPU system interface mode
41	PS2	Select the MPU system interface mode
42	PS3	Select the MPU system interface mode
43	VSS	Power ground
44	NC	No Connection
45	NC	No Connection
46	NC	No Connection
47	NC	No Connection
48	VSS	Power ground
49	LEDK	LED backlight cathode
50	LEDA	LED backlight anode

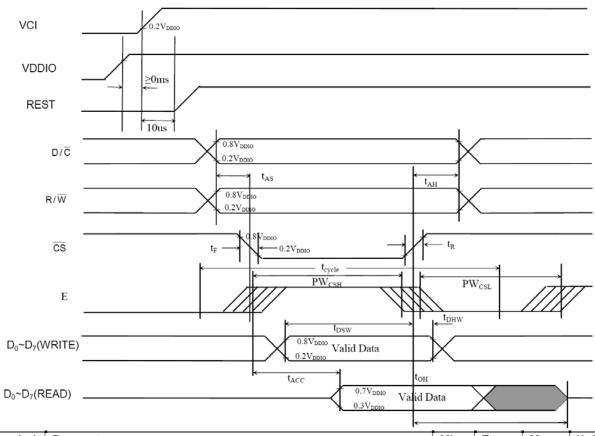
Note1:

PS3	PS2	PS1	PS0	Interface Mode
0	0	0	0	16-bit 6800 parallel interface
0	0	0	1	8-bit 6800 parallel interface
0	0	1	0	16-bit 8080 parallel interface
0	0	1	1	8-bit 8080 parallel interface
0	1	0	0	9-bit generic D[17:9] (262k
				colour) + 3-wire SPI If 65K
				color, D12 shorts to D17
				internally
0	1	0	1	16-bit generic (262k colour)
				+ 3-wire SPI
0	1	1	0	18-bit generic (262k colour)
				+ 3-wire SPI
0	1	1	1	6-bit generic D[17:12] (262k
				colour) + 3-wire SPI
1	0	0	0	18-bits 6800 parallel
				interface
1	0	0	1	9-bits 6800 parallel interface
1	0	1	0	18-bit 8080 parallel interface
1	0	1	1	9-bit 8080 parallel interface
1	1	1	0	3-wire SPI
1	1	1	1	4-wire SPI

5. Absolute Maximum Ratings

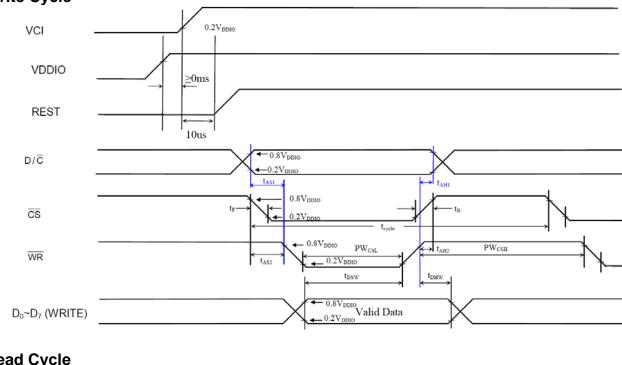

Item	Symbol	Min.	Max.	Unit
Logic Supply Voltage	IOVCC	-0.3	4.0	V
Analog Supply Voltage	VCI	VSS -0.3	5.0	V
Operating Temperature	Тор	-20	70	°C
Storage Temperature	Тѕт	-30	80	°C

6. DC Characteristics

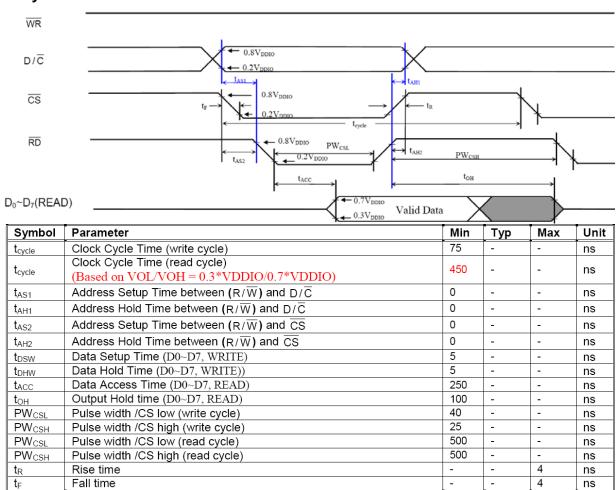

Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Logic Supply Voltage	IOVCC	1.4	-	3.6	V	-
Analog Supply Voltage	VCI	2.5	-	3.6	V	-
Input High Voltage	V _{IH}	0.8IOVCC	-	IOVCC	V	Digital input pins
Input Low Voltage	V _{IL}	VSS	-	0.2IOVCC	V	Digital input pins
Output High Voltage	V _{OH}	0.9IOVCC	-	IOVCC	V	Digital output pins
Output Low Voltage	V _{OL}	VSS	-	0.1IOVCC	V	Digital output pins
I/O Leak Current	I LI	-1	-	1	uA	

7. Timing Characteristics 7.1 Reset Timing Characteristics

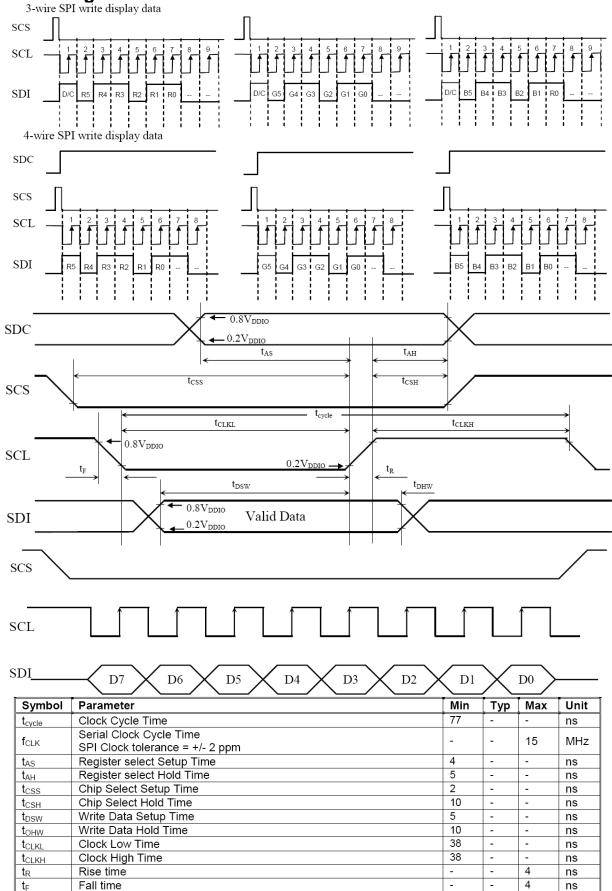
7.2 Parallel 6800 Interface Timing Characteristics



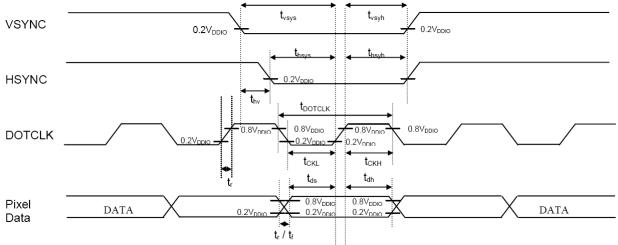
Symbol	Parameter	Min	Тур	Мах	Unit
t _{cycle}	Clock Cycle Time (write cycle)	75	-	-	ns
t _{cycle}	Clock Cycle Time (read cycle) (Based on VOL/VOH = 0.3*VDDIO/0.7*VDDIO)	450	-	-	ns
t _{AS}	Address Setup Time (R/W)	0	-	-	ns
t _{AH}	Address Hold Time (R/W)	0	-	-	ns
t _{DSW}	Data Setup Time (D0~D7, WRITE)	5	-	-	ns
t _{DHW}	Data Hold Time (D0~D7, WRITE))	5	-	-	ns
t _{ACC}	Data Access Time (D0~D7, READ)	250	-	-	ns
t _{он}	Output Hold time (D0~D7, READ)	100	-	-	ns
PW_{CSL}	Pulse width /CS low (write cycle)	40	-	-	ns
PW _{CSH}	Pulse width /CS high (write cycle)	25	-	-	ns
PW_{CSL}	Pulse width /CS low (read cycle)	500	-	-	ns
PW _{CSH}	Pulse width /CS high (read cycle)	500	-	-	ns
t _R	Rise time	-	-	4	ns
t _F	Fall time	-	-	4	ns


YU DU AMSON ELECTRONICS CO., LTD.

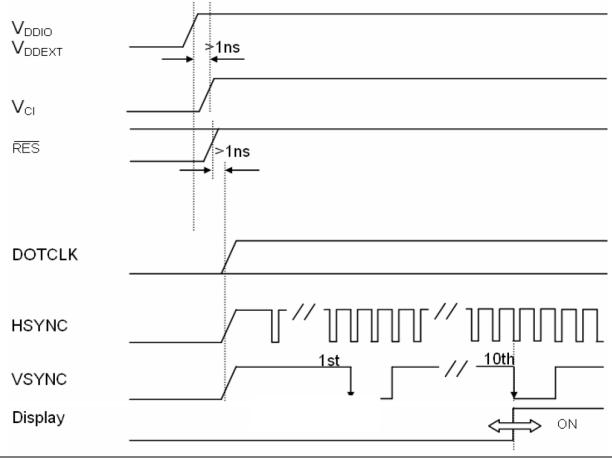
7.3 Parallel 8080 Interface Timing Characteristics Write Cycle



Read Cycle


7.4 SPI Timing Characteristics 3-wire SPI write display data

YU DU AMSON ELECTRONICS CO., LTD.



7.5 RGB Timing Characteristics

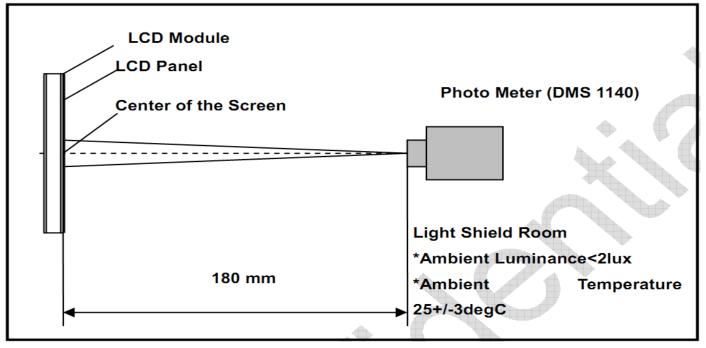
Symbol	Parameter	Min	Тур	Max	Unit
f dotclk	DOTCLK Frequency (70Hz frame rate)	1	5.5	8.2	MHz
t DOTCLK	DOTCLK Period	122	182	1000	ns
t _{VSYS}	Vertical Sync Setup Time	20	-	-	ns
t∨syн	Vertical Sync Hold Time	20	-	-	ns
t _{HSYS}	Horizontal Sync Setup Time	20	-	-	ns
t _{HSYH}	Horizontal Sync Hold Time	20	-	-	ns
t _{HV}	Phase difference of Sync Signal Falling Edge	0	-	320	t _{DOTCLK}
t _{CLK}	DOTCLK Low Period	61	-	-	ns
t _{скн}	DOTCLK High Period	61	-	-	ns
t _{DS}	Data Setup Time	25	-	-	ns
t _{DH}	Data hold Time	25	-	-	ns

7.6 Power Up Sequence for RGB mode

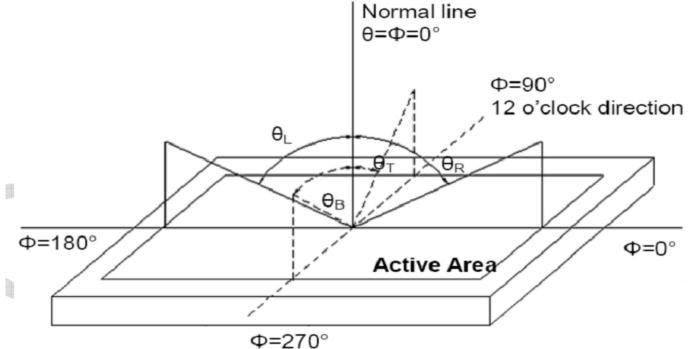
8. Backlight Characteristics

BL Circuit Diagram:

LEDA - EDK

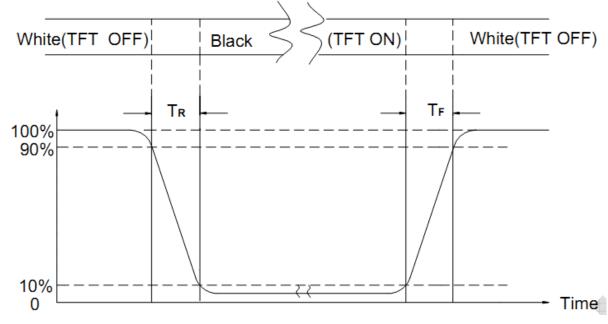

Item	Symbol	MIN	TYP	MAX	UNIT	Test Condition
Supply Voltage	Vf	1	19.8	-	V	lf=20mA
Supply Current	lf		20		mA	
Luminous Intensity for LCM			400		Cd/m ²	lf=20mA
Uniformity for LCM		80			%	lf=20mA
Backlight Color	White					

9. Optical Characteristics


Item	Conditions		Min.	Тур.	Max.	Unit	Note	
	Horizontal	θL	-	45	-	degree		
Viewing Angle	Honzontai	θR	-	45	-		(1),(2),(6)	
(CR>10)	Vertical	θт	-	25	-			
	ventical	θв	-	45	-			
Contrast Ratio	Center		320	400	-	-	(1),(3),(6)	
Response Time	Rising			25	35	ma	(1) (4) (6)	
	Falling		-	25	35	ms	(1),(4),(6)	
	Red x			0.633		-		
	Red y			0.329		-		
	Green x			0.297	-	-	(1) (0)	
CF Color	Green y			0.577		-		
Chromaticity (CIE1931)	Blue x		Тур.	0.133	Тур.	-	(1), (6)	
()	Blue y		-0.05	0.129	+0.05	-		
	White x			0.294		-		
	White y			0.334]	-		
Uniformity			80	85.	-	%	(1),(5) ,(6)	

Note (1) Measurement Setup: The LCD module should be stabilized at given temp. 25°C for 15 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 15 minutes in a windless room.

Note (2) Definition of Viewing Angle


Note (3) Definition of Contrast Ratio (CR)

The contrast ratio can be calculated by the following expression Contrast Datia (CD) = 1.62 / 1.0

Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63, L0: Luminance of gray level 0

Note (4) Definition of response time

- Note (5) Definition of Transmittance (Module is without signal input) Transmittance = Center Luminance of LCD / Center Luminance of Back Light x 100%
- Note (6) Definition of color chromaticity (CIE1931) Color coordinates measured at the center point of LCD

10. Reliability Test Conditions and Methods

NO.	TEST ITEMS	TEST CONDITION	INSPECTION AFTER TEST	
	High Temperature Storage	80°C±2°C×200Hours		
	Low Temperature Storage	-30°C±2°C×200Hours		
	High Temperature Operating	70°C±2°C×120Hours	Inspection after	
	Low Temperature Operating	-20°C±2°C×120Hours	2~4hours storage at room temperature, the samples should be free	
	Temperature Cycle(Storage)	-20°C (30min) 25°C (30min) (30min) (30min) 1cycle Total 10cycle	from defects: 1, Air bubble in the LCD. 2, Seal leak. 3, Non-display. 4, Missing segments.	
	Damp Proof Test (Storage)	50°C±5°C×90%RH×120Hours	5, Glass crack. 6, Current IDD is twice higher than initial value.	
	Vibration Test	Frequency:10Hz~55Hz~10Hz Amplitude:1.5M X,Y,Z direction for total 3hours (Packing Condition)	7, The surface shall be free from damage. 8, The electric characteristic requirements shall be	
	Drooping Test	Drop to the ground from 1M height one time every side of carton. (Packing Condition)	satisfied.	
	ESD Test	Voltage:±8KV,R:330Ω,C:150PF,Air Mode,10times		

REMARK:

1, The Test samples should be applied to only one test item.

2, Sample side for each test item is 5~10pcs.

3,For Damp Proof Test, Pure water(Resistance > 10M Ω)should be used.

4, In case of malfunction defect caused by ESD damage, if it would be recovered to normal state after resetting, it would be judge as a good part.

5, EL evaluation should be accepted from reliability test with humidity and temperature: Some defects such as black spot/blemish can happen by natural chemical reaction with humidity and Fluorescence EL has.

6, Failure Judgment Criterion: Basic Specification Electrical Characteristic, Mechanical Characteristic, Optical Characteristic.

11. Inspection Standard

11.1. QUALITY :

THE QUALITY OF GOODS SUPPLIED TO PURCHASER SHALL COME UP TO THE FOLLOWING STANDARD. 11.1.1. THE METHOD OF PRESERVING GOODS

AFTER DELIVERY OF GOODS FROM AMSON TO PURCHASER. PURCHASER SHALL CONTROL THE LCM AT -10 $^\circ\!C$ TO 40 $^\circ\!C$,and it might be desirable to keep at the normal room temperature and humidity until incoming inspection or throwing into process line.

11.1.2. INCOMING INSPECTION

(A) THE METHOD OF INSPECTION

IF PURCHASER MAKE AN INCOMING INSPECTION, A SAMPLING PLAN SHALL BE APPLIED ON THE CONDITION THAT QUALITY OF ONE DELIVERY SHALL BE REGARDED AS ONE LOT.

(B) THE STANDARD OF QUALITY

ISO-2859-1 (SAME AS MIL-STD-105E), LEVEL II SINGLE PLAN.

CLASS	AQL(%)			
CRITICAL	0.4 %			
MAJOR	0.65 %			
MINOR	1.5 %			
TOTAL	1.5 %			

EVERY ITEM SHALL BE INSPECTED ACCORDING TO THE CLASS.

(C) MEASURE

IF AS THE RESULT OF ABOVE RECEIVING INSPECTION , A LOT OUT IS DISCOVERED. PURCHASER SHALL BE INFORM SELLER OF IT WITHIN SEVEN DAYS. BUT FIRST SHIPMENT WITHIN FOURTEEN DAYS.

11.1.3. WARRANTY POLICY

AMSON WILL PROVIDE ONE-YEAR WARRANTY FOR THE PRODUCTS ONLY IF UNDER SPECIFICATION OPERATING CONDITIONS. AMSON WILL REPLACE NEW PRODUCTS FOR THESE DEFECT PRODUCTS WHICH UNDER WARRANTY PERIOD AND BELONG TO THE RESPONSIBILITY OF AMSON.

11.2. CHECKING CONDITION

- 11.2.1. CHECKING DIRECTION SHALL BE IN THE 45 DEGREE AREA TO FACE THE SAMPLE.
- 11.2.2. CHECKER SHALL SEE OVER 300±25 mm. WITH BARE EYES FAR FROM SAMPLE AND USING 2 PCS. OF 20W FLUORESCENT LAMP.

11.3. INSPECTION PLAN :

	TION FLAN.		
CLASS	ITEM	JUDGEMENT	CLASS
	1. OUTSIDE AND INSIDE PACKAGE	"MODEL NO." , "LOT NO." AND "QUANTITY"	Minor
PACKING &		SHOULD INDICATE ON THE PACKAGE.	
INDICATE	2. MODEL MIXED AND QUANTITY	OTHER MODEL MIXEDREJECTED	Critical
		QUANTITY SHORT OR OVER REJECTED	
	3. PRODUCT INDICATION	"MODEL NO." SHOULD INDICATE ON	Major
		THE PRODUCT	,
	4. DIMENSION,	ACCORDING TO SPECIFICATION OR	
ASSEMBLY	LCD GLASS SCRATCH	DRAWING.	Major
	AND SCRIBE DEFECT.		,
	5. VIEWING AREA	POLARIZER EDGE OR LCD'S SEALING LINE	Minor
		IS VISABLE IN THE VIEWING AREA	
		REJECTED	
	6. BLEMISH • BLACK SPOT •	ACCORDING TO STANDARD OF VISUAL	Minor
	WHITE SPOT IN THE LCD	INSPECTION(INSIDE VIEWING AREA)	
	AND LCD GLASS CRACKS	, , , , , , , , , , , , , , , , , , ,	
	7. BLEMISH SLACK SPOT	ACCORDING TO STANDARD OF VISUAL	Minor
APPEARANCE	WHITE SPOT AND SCRATCH	INSPECTION(INSIDE VIEWING AREA)	
	ON THE POLARIZER		
	8. BUBBLE IN POLARIZER	ACCORDING TO STANDARD OF VISUAL	Minor
		INSPECTION(INSIDE VIEWING AREA)	
	9. LCD'S RAINBOW COLOR	STRONG DEVIATION COLOR (OR NEWTON	
		RING) OF LCDREJECTED.	Minor
		OR ACCORDING TO LIMITED SAMPLE	
		(IF NEEDED, AND INSIDE VIEWING AREA)	
	10. ELECTRICAL AND OPTICAL	ACCORDING TO SPECIFICATION OR	Critical
	CHARACTERISTICS	DRAWING . (INSIDE VIEWING AREA)	
	(CONTRAST, VOP,		
	CHROMATICITY ETC)		
ELECTRICAL	11.MISSING LINE	MISSING DOT. LINE . CHARACTER	Critical
		REJECTED	
	12.SHORT CIRCUIT	NO DISPLAY • WRONG PATTERN	Critical
	WRONG PATTERN DISPLAY	DISPLAY - CURRENT CONSUMPTION	
		OUT OF SPECIFICATION REJECTED	
	13. DOT DEFECT (FOR COLOR AND TFT	ACCORDING TO STANDARD OF VISUAL	Minor
		INSPECTION	

11.4. STANDARD OF VISUAL INSPECTION

NO.	CLASS	ITEM	JUDGEMENT				
			(A) ROUND TYPE: unit : mm.				
		DIAMETER (mm.) ACCEPTABLE Q'TY					
			$\Phi \leq 0.1$ DISREGARD				
		BLACK AND WHITE SPOT	0.1 < Φ \leq 0.25 3 (Distance>5mm)				
		FOREIGN MATERIEL	0.25 < D 0				
11.4.1	MINOR	DUST IN THE CELL	NOTE: $\Phi = (\text{LENGTH} + \text{WIDTH})/2$				
		BLEMISH	(B) LINEAR TYPE: unit : mm.				
		SCRATCH	LENGTH WIDTH ACCEPTABLE Q'TY				
			W ≦0.03 DISREGARD				
			$L \leq 5.0$ 0.03 < W ≤ 0.07 3 (Distance>5mm)				
			0.07 < W FOLLOW ROUND TYPE				
			unit : mm.				
		BUBBLE IN POLARIZER	$\Phi \leq 0.2$ DISREGARD				
11.4.2	MINOR		$0.2 < \Phi \leq 0.5$ 2 (Distance>5mm)				
			$0.5 < \Phi$ 0				
		Dot Defect	Items ACC. Q'TY				
			Bright dot N≦ 4 (Distance>5mm)				
			Dark dot N≦ 4 (Distance>5mm)				
			Pixel Define : Pixel				
			R G B				
11.4.3	MINOR						
			← Dot →← Dot →				
			Note 1: The definition of dot: The size of a defective dot over				
			1/2 of whole dot is regarded as one defective dot.				
			Note 2: Bright dot: Dots appear bright and unchanged in size				
			in which LCD panel is displaying under black pattern.				
			Note 3: Dark dot: Dots appear dark and unchanged in size in				
			which LCD panel is displaying under pure red, green				
			,blue pattern.				

AM-320240-035M

Version: A

2016-06-18

NO.	CLASS	ITEM	JUDGEMEN	Т
11.4.4	MINOR	LCD GLASS CHIPPING	S	Y > S Reject
11.4.5	MINOR	LCD GLASS CHIPPING	SK	X or Y > S Reject
11.4.6	MAJOR	LCD GLASS GLASS CRACK	T	Y > (1/2) T Reject
11.4.7	MAJOR	LCD GLASS SCRIBE DEFECT	$A_{\uparrow \vdash a \dashv}^{\perp} B$	 a> L/3 , A>1.5mm. Reject B : ACCORDING TO DIMENSION
11.4.8	MINOR	LCD GLASS CHIPPING (ON THE TERMINAL AREA)	T	$\Phi = (x+y)/2 > 2.5 \text{ mm}$ Reject
11.4.9	MINOR	LCD GLASS CHIPPING (ON THE TERMINAL SURFACE)	T Z X	Y > (1/3) T Reject
11.4.10	MINOR	LCD GLASS CHIPPING	X - Y Z	Y > T Reject

12. Handling Precautions

12.1 Mounting method

The LCD panel of AMSON TFT module consists of two thin glass plates with polarizes which easily be damaged. And since the module in so constructed as to be fixed by utilizing fitting holes in the printed circuit board.

Extreme care should be needed when handling the LCD modules.

12.2 Caution of LCD handling and cleaning

When cleaning the display surface, Use soft cloth with solvent

[Recommended below] and wipe lightly

- Isopropyl alcohol
- Ethyl alcohol

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface.

Do not use the following solvent:

- Water
- Aromatics

Do not wipe ITO pad area with the dry or hard materials that will damage the ITO patterns Do not use the following solvent on the pad or prevent it from being contaminated:

- Soldering flux
- Chlorine (CI) , Sulfur (S)

If goods were sent without being silicon coated on the pad, ITO patterns could be damaged due to the corrosion as time goes on.

If ITO corrosion happen by miss-handling or using some materials such as Chlorine (CI), Sulfur (S) from customer, Responsibility is on customer.

12.3 Caution against static charge

The LCD module use C-MOS LSI drivers, so we recommended that you:

Connect any unused input terminal to Power or Ground, do not input any signals before power is turned on, and ground your body, work/assembly areas, and assembly equipment to protect against static electricity.

12.4 packing

- Module employs LCD elements and must be treated as such.
- Avoid intense shock and falls from a height.
- To prevent modules from degradation, do not operate or store them exposed direct to sunshine or high temperature/humidity

12.5 Caution for operation

- It is an indispensable condition to drive LCD's within the specified voltage limit since the higher voltage then the limit cause the shorter LCD life.
- An electrochemical reaction due to direct current causes LCD's undesirable deterioration, so that the use of direct current drive should be avoided.
- Response time will be extremely delayed at lower temperature then the operating temperature range and on the other hand at higher temperature LCD's how dark color in them. However those phenomena do not mean malfunction or out of order with LCD's, which will come back in the specified operation temperature.
- If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
- Slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.

Usage under the maximum operating temperature, 50%Rh or less is required.

12.6 storing

In the case of storing for a long period of time for instance, for years for the purpose or replacement use, the following ways are recommended.

- Storage in a polyethylene bag with the opening sealed so as not to enter fresh air outside in it. And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light's keeping the storage temperature range.
- Storing with no touch on polarizer surface by the anything else.
 [It is recommended to store them as they have been contained in the inner container at the time of delivery from us.

12.7 Safety

- It is recommendable to crash damaged or unnecessary LCD's into pieces and wash off liquid crystal by either of solvents such as acetone and ethanol, which should be burned up later.
- When any liquid leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water.

13. Precaution for Use

13.1

A limit sample should be provided by the both parties on an occasion when the both parties agreed its necessity. Judgment by a limit sample shall take effect after the limit sample has been established and confirmed by the both parties.

13.2

On the following occasions, the handing of problem should be decided through discussion and agreement between responsible of the both parties.

- When a question is arisen in this specification.
- When a new problem is arisen this is not specified in this specification.
- When an inspection specifications change or operating condition change in customer is reported to AMSON TFT and some problem is arisen in this specification due to the change.
- When a new problem is arisen at the customer's operating set for sample evaluation in the customer site.

14. Packing Method

TBD