

5ZSC30DV14JV01ZM

◆ Outline: 3.0*3.0*3.0mm

High efficiency

◆ Good thermal dissipation & optical uniform

Table of Contents:

Features	1
Product Code	2
Typical Product Characteristics	3
Maximum Rating	4
Dominant Wavelength Binning	5
Intensity Binning	5
Forward Voltage Binning	5
Electronic-Optical Characteristics	6
Relative Spectral Power Distribution	7
Typical spatial distribution	7
Thermal Design for De-rating	7
Dimensions	8
Suggest Stencil Pattern	8
Packing	9
Reflow Profile	11
Precautions	12
Test items and results of reliability	1/

Features

- RoHS2.0 and REACH-compliant
- MSL2 qualified according to J-STD 020
- ESD 2KV (HBM : MIL-STD-883 Class 2)

Applications

- > Automobile lighting
- Decorative lighting

■ Product Code

$$5 - Z - SC30 - D - V14J - V - 0 - 1 - Z - M$$

1 2 3 4 5 6 7 8 9 6

1	2	3	4	⑤
Process type	Category	Specification	Lens Angle code	Dice wavelength & Luminous rank
5: For Automotive	Z: High Power LED	SC30: 3030	D: 30°	VXXX: Red light & level

6	Ø	8	9	100
Support code	Zener	Cap color code	Module & Lens code	Current code
V: Substrate Code	0: None Zener	1: Series No.	Z: Molding	M : 70mA

■ Typical Product Characteristics(Ta=25°C)

Lum	Luminous Flux (lm) @70mA		Luminous Intensity (mcd) @70mA		Wavelength			Viewing
Group	Min.	Max.	Min.	Max.	(nm)	Min.	Max.	Angle
B11	10	12	18000	22000			1	
B12	12	14	22000	25000	040,000	200		20%
B13	14	16	25000	28000	612-620	2.0	2.6	30°
B14	16	18	28000	31000	X			

- 1. Forward voltage (V_F) ±0.1V ; Radiant power (P_O) ±7% ; Wavelength (λ d) ±1nm ; Viewing angle(2 $\theta_{1/2}$) ±10°
- 2. IS standard testing.
- 3. Note: the brightness data is only for reference

■ Maximum Rating (Ta: 25°C)

Characteristics	Symbol	Min.	Typical	Max.	Unit
DC Forward Current ¹	l _F			100	mA
Reverse Voltage	V_{R}			5	V
Reverse Current	I _R			10	μΑ
Junction Temperature ²	Tj			125	ů
Thermal Resistance Junction / Solder Point	R _{j-s}		28		°C/W
Storage Temperature Range	T _{stg}	-40		100	°C
Soldering Temperature	T_{sol}			260	Ç

- 1. For other ambient, limited setting of current will depend on de-rating curves.
- 2. When drive on maximum current , Tj must be kept below 125°C

■ Dominant Wavelength Binning

Bin code (70mA)	Min. λ _d (nm)	Max. λ _d (nm)
R612A	612	616
R616A	616	620

■ Intensity Binning

Bin code	Min. Φ _v	Max. Φ _v
(70mA)	(Lm)	(lm)
B11	10	12
B12	12	14
B13	14	16
B14	16	18

■ Forward Voltage Binning

Bin code	Min. V _F	Max. V _F
(70mA)	(V)	(V)
V2022	2.0	2.2
V2224	2.2	2.4
V2426	2.4	2.6

■ Electronic-Optical Characteristics

Relative luminous Flux vs. Forward Current (T_a=25°C)

Forward Current vs. Relative Luminous Flux (Ta=25°C)

■ Relative spectral power distribution

■ Typical Spatial Distribution

■ Thermal Design for De-rating

The maximum forward current is determined by the thermal resistance between the LED junction and ambient. It is crucial for the end product to be designed in a manner that minimizes the thermal resistance from the solder point to ambient in order to optimize lamp life and optical characteristics.

■ Dimensions

- § All dimensions are in millimeters.
- § Tolerance is ±0.13mm unless other specified.

■ Suggest Stencil Pattern (Recommendations for reference)

RECOMMENDED PCB SOLDER PAD

RECOMMENDED STENCIL PATTERN
(HATCHED AREA IS OPENING)

§ Suggest stencil t =0.12 mm

Packing

- 1. Each reel (minimum number of pieces is 500 and maximum is 650 for 30 degree product) is packed in a moisture-proof bag along with a packs of desiccant and a humidity indicator card.
- A maximum of 5 moisture-proof bags are packed in an inner box (size: 260mm x 230mm x 100mm ±5mm).
- 3. A maximum of 4 inner boxes are put in an outer box (size: 480mm x 275mm x 215mm ±5mm).
- 4. Part No., Lot No., quantity should be indicated on the label of the moisture-proof bag and the cardboard box.

■ Reflow Profile

IR Reflow Soldering Profile

Profile Feature	Symbol	Pb-Free (SnAgCu) Assembly			Unit
r tollie i eature	Symbol	Minimum	Recommendation	Maximum	Offic
Ramp-up Rate to Preheat (25°C to 150°C)			2	3	K/s
Time t _S (T _{Smin} to T _{smax})	t _s	60	100	120	S
Ramp-up Rate to Peak (T _{Smax} to T _P))	2	3	K/s
Liquidus Temperature	TL		217		°C
Time above Liquidus temperature	tL		80	100	S
Peak Temperature	T_P		245	260	°C
Time within 5 °C of the specified peaktemperature T _P - 5 K	t _P	10	20	30	S
Ramp-down Rate (T _P to 100 °C)			3	4	K/s
Time 25 °C to T _P				480	S

- 1. Do not stress the silicone resin while it is exposed to high temperature.
- 2. The reflow process should not exceed 2 times.

Precautions

- 1. Recommendation for using LEDs
 - 1.1 The lens of LEDs should not be exposed to dust or debris. Excessive dust and debris may cause a drastic decrease in the luminosity.
 - 1.2 Avoid mechanical stress on LED lens.
 - 1.3 Do not touch the LED lens surface. It would affect the optical performance of the LED due to the LED lens' damage.
 - 1.4 Pick & place tools are recommended for the remove of LEDs from the factory tape & reel packaging

2. Lens handling

Please follow the guideline to pick LEDs.

- 2.1 Use tweezers to pick LEDs.
- 2.2 Do not touch the lens by using tweezers.
- 2.3 Do not touch lens with fingers.
- 2.4 Do not apply more than 4N (400gw) directly onto the lens.

3. Lens cleaning

In the case which a small amount of dirt and dust particles remain on the lens surface, a suitable cleaning solution can be applied.

- 3.1 Try a gentle wiping with dust-free cloth.
- 3.2 If needed, use dust-free cloth and isopropyl alcohol to gently clean the dirt from the lens surface.

- 3.3 Do not use other solvents as they may directly react with the LED assembly.
- 3.4 Do not use ultrasonic cleaning which will damage the LEDs.

4. Carrier tape handling

The following items are recommended when handling the carrier tape of LEDs.

- 4.1 Do not twist the carrier tape.
- 4.2 The inward bending diameter should not be smaller than 6cm for each carrier tape.
- 4.3 Do not bend the tape outward.

5. Storage

5.1 The moisture-proof bag is sealed:

The LEDs should be stored at 30°C or less and 90%RH or less. And the LEDs are limited to use within one year, while the LEDs is packed in moisture-proof package with the desiccants inside.

5.2 The moisture-proof bag is opened:

The LEDs should be stored at 30°C or less and 60%RH or less. Moreover, the LEDs are limited to solder process within 168hrs. If the humidity indicator card shows the pink color in 10% even higher or exceed the storage limiting time since opened, that we recommended to baking LEDs at 60°C at least 24hrs. To seal the remainder LEDs return to the moisture-proof bag, it's recommended to be with workable desiccants.

■ Test Items and Results of Reliability

Test Item	Test Conditions	Duration/ Cycle	Number of Damage	Reference
Thermal Shock	–40°C 30min ↑↓5min 125°C 30min	1000 cycles	0/77	AEC-Q101
High Temperature Storage	T _a =100°C	1000 hrs	0/22	EIAJ ED-4701 200 201
Humidity Heat Storage	T _a =85°C RH=85%	1000 hrs	0/22	EIAJ ED-4701 100 103
Low Temperature Storage	T _a =-40°C	1000 hrs	0/22	EIAJ ED-4701 200 202
Life Test	T _a =25°C If=70mA	1000 hrs	0/22	
High Humidity Heat Operation	85°C RH=85% If=70mA	1000 hrs	0/22	
High Temperature Operation	T₄=85°C If=70mA	1000 hrs	0/22	
ESD(HBM)	2KV at 1.5kΩ;100pf	3 Times	0/22	MIL-STD-883

1/1		Failure Criteria		
Item	Cymbol	Condition	Criteria for Judgment	
item	Symbol	Condition	Min	Max
Forward Voltage	V _F	If=70mA	-	USL ¹ ×1.1
Reverse Current	I _R	V _R =5V	-	100µA
Luminous Intensity	I _v	If=70mA	LSL ² ×0.7	-

Notes:

USL: Upper specification level
 LSL: Lower specification level