

5F1519AW5FFNZYNG

- ◆ Outline: 1.5*1.9*0.8mm
- **♦** High Power Output And High efficiency
- **♦** Good thermal dissipation & Optical uniformity

Table of Contents:

reatures	1
Product Code	2
Typical Product Characteristics	
Maximum Rating	4
Luminous Intensity Binning	5
Forward Voltage Binning	
Color Coordinate Binning	6
Relative Spectral Power Distribution	7
Typical Diagram Characteristics of Radiation	- 7
Electronic-Optical Characteristics	- 8
Thermal Design for De-rating	9
Dimensions	10
Suggest Stencil Pattern	10
Packaging	-11
Reflow profile	13
Precautions	14
Test items and results of reliability	16

Features

- > RoHS and REACH-compliant
- MSL2 qualified according to JEDEC J-STD 020
- > ESD 8KV (HBM : ANSI/JEDEC JS-001 Class 3B)
- AEC-Q102 Qualified

Applications

Automotive Exterior Lighting

■ Product Code

5 - F - 1519 - A - W5FF - N - Z - Y - N - G

① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

1	2	3	4	5
Process type	Category	Specification	Lens Angle code	Dice wavelength & Luminous rank
5:For Automotive	F: Flip Chip LED	1519: 1.5*1.9mm	A : 120°	W5xx: Amber

6	7	8	9	100
Support code	Zener & High CRI	Cap color code	Module & Lens code	Current code
N: AlN	Z: Zener	Y: 1700K	N: Paintings	G: 500mA for test

Version:IS-1.0 NO:BT-HP-190801001 Page 2 of 16

■ Typical Product Characteristics(Ta=25°C)

Item	Symbol		Value	Unite	Test		
item		Min.	Тур.	Max.	Omte	Condition	
Forward Voltage ¹	V_{F}	2.8		3.6	V	I _F =500mA	
Reverse Current	I_R			10	μΑ	V _R =5V	
Luminous Intensity ²	Ф	90		170	lm	I _F =500mA	
Viewing Angle ³	$2\theta_{1/2}$		120		deg	I _F =500mA	
Correlated Color Temperature	ССТ		1700		K	I _F =500mA	

- 1. The above forward voltage measurement allowance tolerance is $\pm 0.05 V$
- 2. The above luminous flux measurement allowance tolerance $\pm 7\%$
- 3. The above Viewing angle ($2\theta_{1/2}$) measurement allowance tolerance $\pm 10^{\circ}$
- 4. IS standard test.

■ Maximum Rating (Ta =25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Unit
DC Forward Current ¹	I_{F}			1500	mA
Pulse Forward Current ²	I_{PF}			3000	mA
Reverse Voltage	V_R			5	V
Junction Temperature ³	T_{J}			150	$^{\circ}\!\mathbb{C}$
Thermal Resistance Junction/ Solder Point	R _{THJ-S}		4		°C/W
Operating Temperature Range	T_{OPR}	-40	-	125	$^{\circ}\!\mathbb{C}$
Storage Temperature Range	T _{STG}	-40	-	125	$^{\circ}\!\mathbb{C}$
Soldering Temperature	T_{SD}			260	$^{\circ}\! \mathbb{C}$

- 1. For other ambient, limited setting of current will depend on de-rating curves.
- 2. Duty 1/10, pulse width 0.1ms
- 3. When drive on maximum current , T_J must be kept below 150 $^{\circ}$ C

■ Luminous Intensity Binning (IF=500mA)

Bin Code	Min. Φ _v (Lm)	Max. Φ _v (Lm)
B32	90	100
В33	100	110
B34	110	120
B35	120	130
B36	130	140
B37	140	150
B38	150	160
B39	160	170

■ Forward Voltage Binning (IF=500mA)

Bin Code	Min. V _F (V)	Max. V _F (V)
V2830	2.8	3.0
V3032	3.0	3.2
V3234	3.2	3.4
V3436	3.4	3.6

■ Color Coordinate Binning (IF=500mA)

BIN	CIE X	CIE Y	BIN	CIE X	CIE Y
	0.5765	0.4075		0.578	0.408
BKCF	0.5536	0.4221	BKCG	0.5606	0.425
BRCF	0.5606	0.425	DACG	0.5705	0.4289
	0.578	0.408		0.5883	0.4111

Notes:

The above color coordinates (CIE x, CIE y) measurement allowance tolerance is ± 0.007

■ Relative Spectral Power Distribution

■ Typical Diagram Characteristics of Radiation

■ Electronic-Optical Characteristics

Forward Current vs. Forward Voltage

Relative Intensity vs. Forward Current

Relative Luminous Flux vs. Solider Temperature

Forward Voltage vs. Solider Temperature

Chromaticity Coordinate Shift vs. Solider Temperature

Chromaticity Coordinate Shift vs. Forward Current

Brightek 1519White Series

■ Thermal Design for De-rating

The maximum forward current is determined by the thermal resistance between the LED junction and solder point. It is crucial for the end product to be designed in a manner that minimizes the thermal resistance from the solder point to ambient in order to optimize lamp life and optical characteristics.

Dimensions

- § All dimensions are in millimeters.
- § Tolerance is ± 0.13 mm unless other specified.

■ Suggest Stencil Pattern (Recommendations for reference)

RECOMMENDED PCB SOLDER PAD

RECOMMENDED STENCIL PATTERN (HATCHED AREA IS OPENING)

§ Suggest stencil t =0.12 mm

Packaging

• Feeding Direction (Unit: mm)

Dimensions of Reel (Unit: mm)

• Dimensions of Tape (Unit: mm)

Arrangement of Tape

- 1. Empty component pockets are sealed with top cover tape
- 2. The max loss number of SMD is 2pcs;
- 3. The cathode is oriented towards the tape sprocket hole in accordance with ANSI/EIA RS-481 specifications;
- 4. 3,000pcs per reel;
- 5. The remainder packing in multiples of 500pcs.

Packaging

Reeled product (max.3,000) is packed in a sealed moisture-proof bag. Seven bags are packed in an inner box (size: about 260 X 230 X 100 mm) and four inner boxes are in an outer box (size: about 480 X 275 X 215 mm). On the label of moisture-poof bag, there should be the information of Part No., Lot No. and quantity number; also the total quantity number should be on inspection request form on outer box.

■ Reflow Profile

SMT Reflow Soldering Profile

Duofilo Footuus	Crossb ol	Pb-	Unit		
Profile Feature	Symbol	Min.	Recommendation	Max.	
Ramp-up rate to preheat (25°C to 150°C)			2	3	K/s
Time t_S ($T_{S min}$ to $T_{S max}$)	t_{S}	60	100	120	S
Ramp-up rate to peak $(T_{S max} \text{ to } T_P)$			2	3	K/s
Liquidus temperature	$T_{ m L}$		217		°C
Time above liquidus temperature	$t_{ m L}$		80	100	S
Peak temperature	T_{P}		245	260	°C
Time within 5 °C of the specified peak temperature T _P - 5 K	$t_{ m P}$	10	20	30	S
Ramp-down Rate (T _P to 100 °C)			3	4	K/s
Time 25 °C to T _P				480	S

- 1. Do not stress the silicone resin while it is exposed to high temperature.
- 2. The reflow process should not exceed 2 times.

Precautions

1. Recommendation for using LEDs

- 1.1 The lens of LEDs should not be exposed to dust or debris. Excessive dust and debris may cause a drastic decrease in the luminosity.
- 1.2 Avoid mechanical stress on LED lens.
- 1.3 Do not touch the LED lens surface. It would affect the optical performance of the LED due to the LED lens' damage.
- 1.4 Pick & place tools are recommended for the remove of LEDs from the factory tape & reel packaging

2. Lens handling

Please follow the guideline to pick LEDs.

- 2.1 Use tweezers to pick LEDs.
- 2.2 Do not touch the lens by using tweezers.
- 2.3 Do not touch lens with fingers.
- 2.4~ Do not apply more than 4N (400gw) directly onto the lens.

3. Lens cleaning

In the case which a small amount of dirt and dust particles remain on the lens surface, a suitable cleaning solution can be applied.

- 3.1 Try a gentle wiping with dust-free cloth.
- 3.2 If needed, use dust-free cloth and isopropyl alcohol to gently clean the dirt from the lens surface.
- 3.3 Do not use other solvents as they may directly react with the LED assembly.
- 3.4 Do not use ultrasonic cleaning which will damage the LEDs.

4. Carrier tape handling

The following items are recommended when handling the carrier tape of LEDs.

- 4.1 Do not twist the carrier tape.
- 4.2 The inward bending diameter should not be smaller than 6cm for each carrier tape.

4.3 Do not bend the tape outward.

5. Storage

- 5.1 The moisture-proof bag is sealed:
 - The LEDs should be stored at 30°C or less and 90%RH or less. And the LEDs are limited to use within one year, while the LEDs is packed in moisture-proof package with the desiccants inside.
- 5.2 The moisture-proof bag is opened:
 - The LEDs should be stored at 30°C or less and 60%RH or less. Moreover, the LEDs are limited to solder process within 168hrs. If the humidity indicator card shows the pink color in 10% even higher or exceed the storage limiting time since opened, that we recommended to baking LEDs at 60°C at least 24hrs. To seal the remainder LEDs return to the moisture-proof bag, it's recommended to be with workable desiccants.

■ Test Items and Results of Reliability

Test Item	Test Conditions	Duration/ Cycle	Number of Damage	Reference
Thermal Shock	-40°C 30min ↑↓5min 125°C 30min	1000 cycles	0/26	JESD22 A-106
High Temperature Storage	$T_a=125^{\circ}C$	1000 hrs	0/26	JESD22 A-103B
Low Temperature Storage	T_a =- 40° C	1000 hrs	0/26	JESD22 A-119
Life Test	$T_a=25^{\circ}C$ If=1500mA	1000 hrs	0/26	JESD22 A-108
High Humidity Heat Operation	85°C RH=85% If=1000mA	1000 hrs	0/26	JESD22 A-101
High Temperature Operation	T_a =105 $^{\circ}$ C If=1000mA	1000 hrs	0/26	JESD22 A-108C
ESD(HBM)	2KV at 1.5kΩ;100pF	3 Times	0/30	ANSI/JEDEC JS-001

Failure Criteria						
Item	Symbol	Criteria for	r Judgment			
Hem	Symbol	Condition	Min	Max		
Forward Voltage	V_{F}	If=1000mA	-	$USL^1 \times 1.1$		
Reverse Current	I_R	$V_R = 5V$	-	10μΑ		
Radiant Power	Po	If=1000mA	LSL ² ×0.7	-		

Notes

USL: Upper specification level
 LSL: Lower specification level